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ABSTRACT

With the aroused attentions on promoting renewable energy and the increasing pen-

etration of distributed energy resources (DER) and the electric vehicles (EVs), providing

the energy management tools efficiently for operating DERs and EVs grid-friendly and

attracting customers to involve the management have become the important issues. An

extensive cloud-based framework is firstly proposed to provide the energy management

as a service (EMaaS) for customers (i.e., DERs owners). Customers who are involved

in the same EMaaS form the “community” to trade their produced renewable energy

virtually among others. By facilitating the DERs, storage systems, and the customers’

trading choices within the same community, incentives are maximized as the global cost

is minimized and renewable energy integration is enhanced as the renewable energy con-

sumption is stabilized by the proposed EMaaS for each community. To further attract

customers not only involve in controlling their consumption patterns but also participate

actively, and operate EVs and DERs within the community grid-friendly, the fair demand

response with the EV is secondly realized for the cloud-based energy management service

(F-DREV). The choices of electricity usage and trading are combined to further minimize

the global cost for each community while distributing incentives fairly to the individual

customer. The cross-community interaction (XCI) and adjustment (XCI) are thirdly

proposed for the cloud-based energy management. XCI minimizes the global costs for

the collaborated communities and is performed in the distributed fashion to overcome

the privacy concern and the difficulty for handling the large-scale data. XCA enhances

the efficiency of XCI under uncertainty, where the overwhelmed data exchanging and the

computations can be significantly reduced.
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CHAPTER 1. INTRODUCTION

Reducing greenhouses gasses by promoting renewable energy has become an impor-

tant goal for many countries in recent years to ease the severe climate changes. How to

encourage companies and residents to adopt both large-scale renewable generators (such

as solar parks, wind farms) and distributed rooftop photovoltaic (PV) power, and be able

to simultaneously enhance the integration of these non-dispatchable distributed energy

resource (DER) without bringing challenges (such as reserve capacity, scheduling, and

load management) caused by the fluctuations and uncertainties to the entire power grid

becomes a critical issue. It is achievable with proper managements and novel trading

strategies that could provide incentives to involved customers and efficient control to the

entire power grid.

In this thesis, we firstly introduce the state of the art for the electricity market in

chapter 2. The wholesale electricity market and the distributed electricity market are

discussed. The area that this thesis is related is also pointed out.

Following with the discussion of the electricity market, this thesis proposed a cloud-

based framework to provide a customer-oriented energy management as a service (EMaaS)

for “green communities”, which are formed as virtual retail electricity providers (REP)

by involved DERs providers. While the green communities are formed as virtual REP,

customers (i.e., involved DERs providers) are able to virtually trade their produced re-

newable to each other, and be able to benefit mutually. EMaaS is an extensive framework

and also a business model for renewable energy integration. Incentives are maximized as

the global cost is minimized and renewable energy integration is enhanced as the renew-
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able energy consumption is stabilized by the proposed EMaaS for each green community.

A linear programming model is formulated for EMaaS. 1

This thesis secondly introduced the demand response and the charging scheduling

of electric vehicles (EVs) are realized for the cloud-based energy management service.

With the combination of electricity usage choices and trading choices, the proposed

fair demand response with electric vehicles (F-DREV) is able to further minimize the

global cost for each community while distributing incentives fairly to the individual

customer via a binary linear programming model. The fairness in F-DREV is proposed

as “customers with higher participation level can reduce individual cost more than other

customers with lower participation level.” It is attainable by customizing trading prices

for each customer base on his/her fairness index. F-DREV attracts customers not only

to involve in controlling their consumption patterns but also participate actively, and

allows EVs and DERs within the community operate grid-friendly by smoothing the

fluctuated penetration of EV loads and production capacities from DER. 2

The distributed large-scale interaction and adjustment are proposed for the cloud-

based energy management in the third part of the thesis. The cross-community in-

teraction (XCI) minimizes the global costs as maximizing the incentives for customers

within all the collaborated communities over the given time period. XCI is performed

in the distributed fashion to overcome the privacy concern and the ability, scalability,

and efficiency of the allocated computing resources for handling the large-scale data. It

can be solved efficiently via the alternating direction method of multiplier (ADMM).

The cross-community adjustment is also proposed to enhance the efficiency of XCI for

the cloud-based energy management service under uncertainty. The overwhelmed data

exchanging and the computations can be significantly reduced without rerunning the

management frequently.

1This chapter is published in Smart Grid, IEEE Transaction on, vol.6, no.6, pp.2816-2824, Nov. 2015
2This chapter is published in Smart Grid, IEEE Transaction on, vol.PP, no.99, pp.1-1, doi:

10.1109/TSG.2016.2609738
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The summary and the future work are discussed in the last part, and the remainder

of this thesis is organized as follows. The state of the art for the electricity market is

discussed in chapter 2. The “EMaaS: Cloud Based Energy Management Service for Dis-

tributed Renewable Energy Integration” is introduced in chapter 3. The “Fair Demand

Response with Electric Vehicles for the Cloud Based Energy Management Service” is dis-

cussed in chapter 4. The distributed large-scale interaction and adjustment are proposed

in chapter 5. Summary and future work are discussed in chapter 6.
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CHAPTER 2. STATE-OF-THE-ART: ELECTRICITY

MARKET

This chapter presents the introduction of the state-of-the-art for the current electricity

market and how the proposed work in this thesis relates to the current practice.

A system of electricity market [3] enables the purchases, sales and short-term trades

of electricity (both power and energy) with the main attributes that include the vari-

ous spectrum of electricity markets (i.e., day-ahead, hour-ahead, and real-time market),

markets for both financial and physical (i.e., transmission rights, capacity, reserve mar-

kets), and various tradeable commodities (i.e., energy, ancillary services). Purchases are

usually performed through bids to buy, and sell through offers. Both bids and offers

follow the supply and demand principles to set the price, and the power purchase agree-

ments are the contracts considered private bilateral transactions between counterparties

in contracts as the long-term trades.

The entire electricity market can be generally divided into two scales, that is, the

wholesale electricity market and the retail market, as shown in the Fig.2.1 following the

concept in [4] and [5]. The structure contains the day-ahead market and the real-time

market. Both of these two markets include the energy and ancillary services, and

are arranged according to the bilateral contracts and the power system. Competing

generators company offer their electricity outputs to the retailer or large consumer in

the wholesale electricity market, and then the retailer re-price the electricity and take

it to the retail electricity market, which depends on the availability of the retail choices

within different states [6] and is presented as the dashed box in Fig. 2.1. Large consumers
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Bilateral contracts

Wholesale Electricity Market

ISO/RTO
Transmission 

Company

Generation 

Company

Generation 
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Company

Generation 
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End User

End User
...

Retail 

Electricity 

Market

Large consumer

End User

End User

Power system

Ancillary 

Services
Energy

Day-ahead market Real-time market

Ancillary 

Services
Energy

Figure 2.1: The existing general electricity market structure

could either purchase from the wholesale market or from the various retailers in the retail

electricity like the end-users of the electricity.

More details for the wholesale electricity market, the distributed electricity market

and the domain of this thesis are discussed in the following sections.

2.1 Wholesale electricity market

The wholesale electricity market has the objective to promote economic efficiency

and lower delivered energy costs, maintains power system reliability, mitigates signifi-

cant market power and increases the choices offered to wholesale market participants.

Trades in the wholesale market occur within a multi-state interconnection as the inter-

state sales. Depending on the nature of the sales, the wholesale market is regulated

across the country in regions expect the ERCOT, which functions as an exception as

the entire interconnection lies in a single state, Texas. Split structure exists within the

regional wholesale markets, where a number of regions organize their markets under

an independent system operator (ISO) or a regional transmission organization (RTO).

According to the Federal Energy Regulatory Commission, the latest existing regional

wholesale markets are shown in Fig. 2.2 [1], and markets within the United State are

listed in the following.

1. ISO New England
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Figure 2.2: Regional Organization Map from FERC [1]

2. New York ISO

3. PJM (Mid-Atlantic, a portion of the Midwest)

4. Midwest ISO

5. Southwest Power Pool

6. ERCOT (most of Texas)

7. California ISO

The ISO/RTO was authorized to administer wholesale markets for the sale of electric

energy (both day-ahead and real-time purchases), electric power capacity, and ancillary

service (as we mentioned in the beginning paragraph of this chapter). They decide

which generators will run and at what levels, grant the transmission services, and run

the billing system for payment for power with the prices set through bilateral exchanges

but determined by the ISO/RTO [7].
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The Day-ahead market and the real-time market are the existing markets that

contribute to the the spot market in the wholesale electricity market, where a central

dispatcher or the broker administer interchange between different utilities and split the

savings between both low-cost utility and higher-cost utility. [5]. Both of the day-ahead

and the real-time market trade energy and the ancillary services that include the

reserve capacity, load following and frequency regulation, voltage regulation, and black-

start capability [8]. The power system and the bilateral trading arrange outside of

those two market, where the bilateral trading determines the price of each transaction

via negotiation between two involved parties (i.e., buyer and seller), and is occurred as

long as owners of the different electric system were interconnected [9].

The locational marginal pricing (LMP) [10] or nodal pricing are commonly considered

as the best approach available for operating large, interconnected power pool efficiently

and reliably. LMP is used in the wholesale electricity market to reflect the value of

electric energy at different locations, accounting for the patterns of load, generation,

and the physical limits of the transmission system. Elements of the LMP include the

constraints, the locations, and the marginal pricing, which reflects the cost to serve the

next increment of load in a system that is economically dispatched.

2.2 Retail electricity market

The retail electricity market involves the final sale of power from an electricity

provider to an end-user of electricity (i.e., consumer). Regardless of whether every

state allows retail competition or not, supply for end-user is obtained either through

the open, competitive wholesale market, from the utility-owned rate-based generation or

some combination of the two [11]. Generally, electricity retail reform follows from elec-

tricity wholesale reform, but it is possible to have a single electricity generation company

and still have retail competition. That is if a wholesale price can be established at a
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node on the transmission grid, and the electricity quantities at that node can be recon-

ciled, competition for retail customers within the distribution system beyond the node is

possible, such as the German market. End-use customers can choose their supplier from

competing electricity retailers.

While the market structures are varied, electricity retailers have some common func-

tions to perform or enter into a contract for to compete effectively. Those functions

include the billing, credit control, customer management, distribution use-of-system con-

tract, reconciliation agreement, pool or spot market purchase agreement and the hedge

contracts. Competitive retail needs open access to distribution and transmission wires,

thus appropriate returns (i.e, the access fee and the regular fee) have to be provided

to owners of the wires and encourage the efficient location of power plants. Retail

electricity providers (REPs) [12] also have to provide the real-time market analysis to

determine return-on-investment for optimizing profitability or reducing end-user cost of

goods, therefore, various service plans are developed to promote their customers’ par-

ticipation. Unlike the strategies in the wholesale electricity market, how to provide and

design the more flexible service plans to their customer is a critical issue for REPs in

the competitive retail electricity market. To attract customer not only involving the en-

ergy management (e.g., demand-side management) but also actively use from renewable

energy, choices are the essential factors [13] in retail electricity market.

Several existing schemes are developed to provide incentives to end-user of electric-

ity (i.e., customers) in the scale of retail electricity. Some exist directions are enabling

the competitive retail electricity market to allow customers have the choice of choosing

various REP, providing the demand response to create the opportunity for customers

adjusting their electricity demand according to the fluctuated electricity prices, or ac-

cepting the bidding scheme for consumers’ devices. Net metering is another existing

scheme to DERs owners by providing the buy-back programs for customers’ excess gen-

eration, and its policy has been well established in the state as shown in Fig. 2.3 [2].
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Figure 2.3: Net Metering from U.S. Department of Energy DSIRE [2]

According to the International Confederation of Energy Regulators (ICER), the policy

behind the net metering recognizes that energy generated at the point of consumption

by the customer is worth at least as much as a unit of energy delivered by the utility to

that customer, and that energy is worth more than the traditionally calculated avoided

cost of generating the next marginal unit of energy at a remote power plant [14].

2.3 Discussed domain of this thesis

Currently, the electricity may be restricted to wholesale trade only and the retail mar-

kets involve electric energy sale directly to the end-users. Yet, recently, the development

of retail electricity market arouse a lot of attentions as it is in the transforming pro-

cess with the new deployed advanced power engineering technologies, such as individual

owned distributed energy resources (DER), electric vehicles (EV), or individual storage

systems, from the end-users side. In other words, the future electricity market structure
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Figure 2.4: The future electricity market structure

could be transformed into the structure shown in Fig. 2.4, where customers with the new

role as prosumer (i.e., producer and consumer). Depending on the scale of the owned

DERs, customers would be either the large prosumers or the end-prosumer and have

the opportunity to act as different roles either in the wholesale electricity market or the

retail electricity market, which are denoted as the new appeared red double head arrow

in Fig. 2.4. Similar to the large consumer, large prosumers could either purchase from

the wholesale market or from the various retailers in the retail electricity, and they could

also participate either in the wholesale electricity market as a generation company or in

the retail electricity market as a retailer with their energy production. End-prosumer

could participate in the retail electricity market following the net metering programs

provided by the retailers. Following the concept of the essential factor “choice” in the

retail electricity market for customers’ participation, a progressive business model has

to be developed to adapt and create prosumers’ behaviors between the retail electricity

market. Moreover, the energy management is also required at the retail level, as without

proper management for the emerged DERs and EVs, the fluctuations and uncertainties

of uncontrollable and intermittent renewable energy resources [15][16] could bring several

potential challenges exist for integrating these DERs and EVs, such as reserve capacity

[17] [18], scheduling, load management and forecasting [19].

In the literature, several approaches have been attempted to enhance renewable en-

ergy integration. Distributed generations (DG) and their integration attempts [20][21]

have been investigated to dispatch bidirectional flows on aged distribution network de-
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signed for unidirectional flows. Due to the fact that conventional distribution manage-

ment systems infrastructure commonly lack the capability of DG dispatching, power

grids, and local loads have to passively accept unmanaged DG outputs. In order to

provide a managed renewable integration, a cluster of DG installations can be collec-

tively bundled as a virtual power plant (VPP) [22] and operated by a centralized control

entity. As the core of VPP, the energy management systems (EMS) of a scheduling co-

ordinator can maximize the cluster profit by managing its distributed energy resources

(DERs) while considering their physical positions [23]. Demand response (DR) is also

available as an energy management technique from the demand-side perspective. As

an important ingredient of the smart grid, DR promotes both market efficiency and

operational reliability and is currently evolved in existing programs at different Indepen-

dent System Operators (ISOs)/ Regional Transmission Organizations, such as California

ISO (CAISO) and New York ISO [24]. Microgrid functions autonomously by incorpo-

rating localized DGs, storage systems, and controllable load. Microgrid control center

optimizes operating states and coordinates components to pursue economic benefits in

either grid-connected or stand-alone mode [25]. Multiple microgrids can participate in

the market and effectively utilize the DERs through a two level multi-agent systems

[26]. According to the above four renewable integration schemes (unmanaged DG, VPP,

DR and microgrid), a dedicated, centralized control entity must be set up to implement

corresponding control mechanisms, which is costly to operate in practice. The complex-

ity of the business and operation models will significantly increase as more DERs are

developed.

The current practice in the retail electricity market utilizes the net metering [2] mech-

anism to maximize the incentive for individual renewable generation providers, and is

supported national wide in 39 states according to the Data Base of State Incentives for

Renewables and Efficiency [27]. Any “net metering” programs that allow customers to

receive payment for any excess generation produced by their solar panels are offered in
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the competitive market, where customers are free to choose a retail electricity provider

(REP) [12] that provides the excess generation buy-back program that they like best.

Although net metering brings the major step forward for the distributed solar markets

in retail electricity market [14], the actual net metering policies (which include mone-

tary values for solar production) are complicated and different from state-to-state and

even by electric service territories within states. Take Texas as an extreme example,

only parts of Texas are open to retail electric competition, such as Dallas and Houston,

where companies that sell electricity to customers (retail electric providers, like Green

Mountain Energy) are separate from the companies that manage the transmission and

distribution of electricity. However, within this kind of competitive retail electricity mar-

ket in Texas, only few retail electricity providers have the programs that offer value to

those who generate excess solar power from their homes [28] like the Green Mountain

Energy [29], where the one-month delay credits are applied to the eligible customers’

outflow power from their renewable energy production. Individual renewable genera-

tion providers, especially homeowners with small-scale renewable generators, will face

difficulty in having sufficient choices, such as not only selling their surplus renewable

generation to few REPs.

To tackle the aforementioned technical difficulties, this thesis proposed a cloud-based

framework to provide the customer-oriented Energy Management as a Service (EMaaS)

for “communities”, which are formed as virtual REPs by involved customers who own

the DERs [30]. To be more specific, DERs owners can choose to join a service plan by

agreeing to the benefits and rules in contract to EMaaS provider. Then they become

customers of a certain community that is formed by other customers who also joined the

same service plan. A new price appears when the community is formed and is utilized

for customers trading their produced renewable energy to other customers within the

same community. This trading among customers are denoted as the “virtual trading”

throughout the thesis as it is performed virtually due to the physical power distribution
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Figure 2.5: Concept of the cloud-based energy management service

lines may not exist among customers, and it can be realized efficiently via a mapping

mechanism with the cloud-based framework. The virtual trading could be performed

within the same community or across multiple communities (i.e., various EMaaS plans) as

long as the agreements are made following the physically available line capacity from local

utilities and the physical distribution network that supports both customers and non-

customers of the energy management service. The paradigm of the proposed extensive

cloud-based framework could support different purposes and types of services that are

provided by multiple service providers to various groups of customers, as shown in Fig.

2.5. That is, the service could provide to customers who own various types of DERs

(e.g., renewable energy resources or micro-turbine) to achieve different objectives (e.g.,

achieve the lowest electricity cost) by the corresponded service strategy developments.

This thesis demonstrates a purpose that focuses on providing incentives to the group of

prosumers who own the renewable DERs (i.e. the wind or solar), where the environment

cost is considered along with the development of the energy management service strategy.
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The discussed domain of this thesis lies on the scale of the retail electricity market.

Information and the regulated prices from the wholesale electricity market are utilized

like the existing REPs. The proposed cloud-based energy management can be easily

adopted by existing retail electricity providers. The cloud-based energy management is

provided as a service via an extensive framework. It can be viewed as a novel business

model for REP providing the brand-new service plans to the heterogeneously located

customers (i.e., customers could be physically located in the various power distribution

line), and the supplements for REPs making the agreements to local utilities and the

wholesale market. It significantly reduces infrastructure costs of decision making and

increases the efficiency, reliability, and scalability.

The global cost (i.e., include electricity cost and the environment cost) can be mini-

mized as the maximized incentives for each community via facilitating among the involved

DERs, storage systems, and customers’ behavior with the created plentiful choices (i.e.,

trading choices among other customers and between the entire power grid are discussed

in chapter 3, the combined choices of trading and electricity usage in chapter 4) and

further for the multiple communities via the cross-community interaction (discussed in

chapter 5). The global cost for each community or for multiple communities is treated

as the entire objective function in chapter 3, 4 and 5, and it includes another sub-level

of incentive to the individual customer to maintain the proposed fairness in chapter 4.

While performing the collaboration among various communities (which is served vari-

ous service plans by various service providers) in the cross-community interaction, the

virtual trading is performed at the community level instead of within the DERs owners

while it is discussed for the single community. The traded amount of energy between

communities has to be tracked since the benefit of the virtual trading depends on the

amount of produced renewable energy within each community, thus, the traded amount

between communities cannot exceed the corresponding community’s original import-

ing/exporting amount of energy from/to the main power grid, which is determined by
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the energy management within each community. In other words, the traded amount be-

tween communities in the cross-community interaction depends on the surplus or deficit

amount of produced renewable energy within every community.

The proposed energy management service also supplements the planning of ancillary

services as the valuable reference can be provided for designing the reserve capacity.

EMaaS is able to enhance the renewable energy integration by determining and honoring

commitments, which is similar to the unit commitment [31] but for DERs in distributed

networks. Commitments would be designed and agreed between the EMaaS provider and

local utilities as contracts, which already exist between REPs [12] and utilities. With

the formed community, EMaaS is able to coordinate several DERs and demands as a

single one, and is able to restrict and stabilize the amount of produced renewable energy

according to the assigned upper bound and lower bound in each commitment as the

constraints. The smaller the difference between the upper bound and the lower bound,

the less capacity that conventional generators need to reserve. Therefore, the renewable

generators within the green community would be able to work in a grid-friendly manner,

with low spinning reserve requirement for conventional generations. More details of this

part will be introduced in chapter 3. The commitments are also utilized to smooth

the fluctuated penetration of EV loads and production capacities from DER within

each community in chapter 4, where DERs and EVs within the same community can

be operated grid-friendly, and help utilities managing their generators scheduling more

efficiently.

Furthermore, the incomplete information is another major difference that distin-

guishes the proposed energy management in this thesis from energy management utilized

in the wholesale electricity market. That is, the business model and the management

are performed only depend on the heterogeneous involved DERs owners, who could be

physically located in the various power distribution line. DERs owners could choose the

different energy management service providers or different energy management service
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plans like the existing customer who can choose service plans from multiple REP. To meet

the requirement of the customers’ engagement with this characteristic of heterogeneous

and dynamic, providing the energy management service via the extensive cloud-based

framework can adopt the ability of dynamically serving various groups of DERs owners

while acquiring the various pricing information and physical power networks’ limitation

from the wholesale electricity market or the local utility operators.

In the brief summary, the proposed work in this thesis is the novel business model

and energy management service for prosumers in the retail electricity market scale. It

provides incentives and the energy management to increase customers’ participation,

which is an essential factor for DR or DSM in smart grid, and smooths the fluctuation

to operate DERs and EVs grid-friendly via the customers’ behavior changes. It could

successfully bridge the current practice in the retail electricity market to the future trans-

formed electricity market structure and is the progressive approach to solve the difficult

problem in smart grid, that is, how to attract customers to involve the management and

use from renewable energy.
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CHAPTER 3. EMAAS: CLOUD-BASED ENERGY

MANAGEMENT SERVICE FOR DISTRIBUTED

RENEWABLE ENERGY INTEGRATION

A paper published in IEEE Transaction on Smart Grid

Yu-Wen Chen, J. Morris Chang

3.1 Abstract

The increasing penetration of renewable energy has become a critical issue in recent

years. The future power system is foreseen to depend on distributed energy resource

(DER) excessively for continuous load support. Yet, DER providers are also facing

limited choices in their produced renewable energy. Massive information and complicated

cooperation emerging from involvers intensify issues in terms of efficiency, reliability and

scalability. In this chapter, a cloud based framework is proposed to provide a customer-

oriented Energy Management as a Service (EMaaS) for green communities, which are

formed as virtual retail electricity providers (REPs) by involved DERs providers. It can

be adopted by existing REPs or utilities. For each green community, the multi-period

global cost is minimized to promote renewable energy, and renewable energy consumption

is stabilized to enhance integration. A solvable linear programming model is formulated

for EMaaS. The case studies results reveal the proposed EMaaS retains satisfactory

performances.
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3.2 Nomenclature

Parameters

Gb Production capacity of large-scale renewable generators.

Gs Production capacity of small-scale renewable generators.

D Electricity demand.

T c Assigned capacity for power distribution line.

Pm Price for importing conventional energy.

P s Price for exporting renewable energy to power grid.

P r Price for trading renewable energy in green community.

T u Upper bound for renewable energy integration.

T l Lower bound for renewable energy integration.

Cs Corresponding cost for prosumers.

Cb Corresponding cost for large-scale renewable generators providers.

Variables

(i) Decision variables for small-scale renewable generators

Id Import renewable energy for demand.

Is Import renewable energy to storage.

Im Import conventional energy for demand.

Err Export renewable energy to green community.
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Erm Export renewable energy to power grid.

Esr Export stored renewable energy to green community.

Esm Export stored renewable energy to power grid.

(ii) Decision variables for large-scale renewable generators

Ebm Export renewable energy to power grid.

Ebr Export renewable energy to green community.

(iii) State variables for storage systems

S State of charge for storage.

Subscripts

i ith small-scale renewable generator.

j jth large-scale renewable generator.

t tth time step.

z zth power distribution line.

Sets

N For small-scale renewable generators.

B For large-scale renewable generators.

T For time step from 1 to K.

Z For power distribution lines.

L For customers connected to the same power distribution line.
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3.3 Introduction

Greenhouse gases are believed to be a major cause for climate changes in temperature,

storm severity, and sea level. Increasing the energy efficiency to reduce the greenhouse

emissions from the combustion of fossil fuels becomes a critical goal for many countries,

for example, the European Union has agreed to reduce greenhouse gases by 30% by

2020 [32]. Among different approaches, increasing the penetration of renewable energy

in the country’s electricity has been an important target for many states and countries.

According to Renewable Portfolio Standard Program in California, the 2014 tracking

progress report states the generation target as serving 33% of retail electricity from

renewable resources by the end of 2020. Large-scale renewable generators (such as solar

parks, wind farms) and distributed rooftop photovoltaic (PV) power can be adopted by

companies and residents in order to achieve that goal. Proper management and trading

strategies could maximize the incentives for renewable resource development and usage,

and optimize operation costs and reduce carbon footprint for renewable generators.

However, integrating DERs can be challenging due to the fluctuations and uncer-

tainties of uncontrollable and intermittent renewable energy resources [15][16]. Several

potential challenges exist for renewable energy integration, including reserve capacity

[17][18], scheduling, load management and forecasting [19].

In the literature, several approaches have been attempted to enhance renewable en-

ergy integration. Distributed generations (DG) and their integration attempts [20][21]

have been investigated to dispatch bidirectional flows on aged distribution network de-

signed for unidirectional flows. Due to the fact that conventional distribution manage-

ment systems infrastructure commonly lack the capability of DG dispatching, power

grids and local loads have to passively accept unmanaged DG outputs. In order to pro-

vide a managed renewable integration, a cluster of DG installations can be collectively

bundled as a virtual power plant (VPP) [22] and operated by a centralized control entity.



www.manaraa.com

21

As the core of VPP, the energy management systems (EMS) of a scheduling coordinator

can maximize the cluster profit by managing its distributed energy resources (DERs)

while considering their physical positions [23]. Demand response (DR) is also available

as an energy management technique from demand-side perspective. As an important

ingredient of smart grid, DR promotes both market efficiency and operational reliability,

and is currently evolved in existing programs at different Independent System Opera-

tors (ISOs)/ Regional Transmission Organizations, such as California ISO (CAISO) and

New York ISO [24]. Microgrid functions autonomously by incorporating localized DGs,

storage systems, and controllable load. Microgrid control center optimizes operating

states and coordinates components to pursue economic benefits in either grid-connected

or standalone mode [25]. Multiple microgrids can participate in the market and effec-

tively utilize the DERs through a two level multi-agent systems [26]. According to the

above four renewable integration schemes (unmanaged DG, VPP, DR and microgrid), a

dedicated, centralized control entity must be set up to implement corresponding control

mechanisms, which is costly to operate in practice. The complexity of utilities’ business

and operation models will significantly increase as more DERs are developed.

Net metering [2] is an existing mechanism to maximize the incentive for individual

renewable generation providers, and is supported national wide in 39 states according

to the Data Base of State Incentives for Renewables and Efficiency [27]. Supported

programs allow customers to receive payment for excess produced renewable energy in

the competitive market, where customers are free to choose a retail provider that provides

the excess generation buy-back program that they prefer. However, only few retail

electricity providers (REPs) [12] offer buy-back programs, like Green Mountain Energy

in Texas. Individual renewable generation providers, especially homeowners with small-

scale renewable generators, will face difficulty in having sufficient choices, such as not

only selling their surplus renewable generation to few REPs.
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To tackle the aforementioned technical difficulties, this chapter proposed a cloud

based framework to provide the customer-oriented Energy Management as a Service

(EMaaS) for green communities, which are formed as virtual REPs by involved DERs

providers. The proposed EMaaS could be adopted and operated by existing REPs or

utilities. An intermediate service between utilities and customers is provided to promote

the generation, trading and consumption of renewable energy. EMaaS actively facilitates

among different components through a linear programming (LP) model to achieve two

purposes for each green community: (i) maximizing the incentive (minimizing the global

cost) to increase the willingness of both companies and residents to equip renewable

energy generators and use the service, and (ii) enhancing renewable energy integration

by determining and honoring commitments, which is similar to the unit commitment

[31] but for DERs in distributed networks. Commitments would be designed and agreed

between the EMaaS provider and local utilities as contracts, which already exist between

REPs and utilities [12].

EMaaS is essentially a service provided on an extensive framework and also a business

model for distributed renewable energy integration, that creates attempt to futuristic

energy Internet [33]. When EMaaS helps the green communities to form as virtual

REPs, a new price appears for customers trading produced renewable energy within the

community. By trading with other customers within the same community following this

price, customers can reduce their overall cost and benefit mutually while no dedicated

physical controller or operating entity is required. With the option of trading within

the green community and various components, customers have more options for their

produced renewable energy. Finding the optimal global cost for each community becomes

non-trivial due to the potential number of various combinations of options, especially

when multi-period fluctuated prices, renewable generation forecasting, storage systems

and electricity demand are considered together. To solve the problem efficiently, a linear

programming (LP) model is formulated for EMaaS helping each community to achieve



www.manaraa.com

23

the optimal global cost by suggesting the ideal options for each customer’s renewable

generation.

The contributions of this chapter are summarized as follows. (i) To the best of our

knowledge, this is the first work providing the customer-oriented energy management as

a service (EMaaS) through a cloud based framework to achieve the multi-period global

optimal costs for each green community, and promote renewable energy integration by

determining and honoring commitments. The concept of forming green communities

as virtual REPs by involved DERs providers allows customers to trade their produced

renewable energy to each other, and be able to benefit mutually. Customers can have

more trading options while the multi-period fluctuated prices, renewable generation fore-

casting, storage systems and electricity demand are considered altogether. (ii) EMaaS

is a beneficial attempt for cloud application in power system community. It signifi-

cantly reduces infrastructure costs of decision making and increases efficiency, reliability

and scalability, based on the proposed virtual renewable energy trading system on the

cloud. (iii) A linear programming model is formulated for EMaaS, and case studies are

conducted to estimate and evaluate the performances of the proposed EMaaS.

The remainder of this chapter is organized as follows. Section 3.4 presents the system

model, and section 3.5 gives the formulation model. Section 3.6 discusses the case studies,

and the conclusion is summarized in section 3.7.

3.4 System Model

In this chapter, the four essential factors are the multi-period fluctuated prices, re-

newable generation forecasting, states of storage systems, and electricity demand. They

are considered together by EMaaS so that the optimal global cost for each green com-

munity could be achieved. For example, if the fluctuated prices and the storage systems

are the only considered factors, customers would store more renewable energy for future
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usage when the price is higher. However, they could store more renewable energy than

their future demand, and degrade the service of others. Therefore, the electricity demand

and the forecasted renewable generation must be considered together.

In the following subsections, first, a cloud computing based architecture is introduced,

which represents the key enabler of EMaaS. Then, the framework with various compo-

nents is secondly presented, and several utilized data are summarized. Since the physical

power distribution lines may not exist between customers, the renewable energy trading

scheme is performed virtually through a mapping in a cooperative procedure, which is

addressed with an adjusting process in the last subsection.

3.4.1 Cloud Computing based Architecture

Cloud computing brings enormous advantages including avoiding capital investments,

reducing maintenance expenses, providing secure managements, and simplifying imple-

mentations [34][35]. It is defined in National Institute of Standards and Technology [36]

as the model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources, which can be rapidly provisioned and released

with minimal management effort or service provider interaction.

Providing the energy management service on the cloud infrastructure allows various

components to access it easily through public or private cloud with thin client interfaces,

such as web browser or application programming interface (API). Multiple green commu-

nities could be easily formed without any limitation, and the energy management is able

to cope with the issues of efficiency, reliability and scalability even the complexity of co-

ordinating the massive data is increased. Comparing to providing the service without the

cloud infrastructure for serving M green communities, the cloud based framework could

reduce the cost M − 1 times, which includes the cost for establishing the local computa-

tional machine to execute the service, the duplicated implementation for the service and

the maintenance. Existing major service models of cloud computing are Infrastructure
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Figure 3.1: Framework

as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS) [36].

The proposed Energy Management as a Service (EMaaS) is an extension of PaaS model

and specifically designed for DERs providers forming virtual REPs to achieve optimal

global costs and improve the renewable energy integration. It is applicable to large scale

power system by including more involvers as customers.

3.4.2 Framework

The framework is presented in Fig. 3.1. An information pool and a service manager

run on the cloud infrastructure. They are accessible to other components through the

thin client interface via the information exchanging lines. Sequential time-series data

depending on various geographic locations are stored in the information pool, and uti-



www.manaraa.com

26

lized by the service manager. The service manager provides EMaaS for multiple green

communities and suggests ideal choices to every customer within the green community.

The green community is formed by two types of non-dispatchable DERs providers.

The first type DER is large-scale renewable generators, which are built by individual

companies with the purpose of raising revenue, such as wind farms and solar parks.

The second type DER is small-scale renewable generators, e.g. PV panels equipped

on the rooftop of various types of buildings. These small-scale renewable generators

providers are called prosumers, since they are both the energy producer and the energy

consumer. Reducing the electricity cost for daily demands is their priority. Both large-

scale and small-scale renewable generators connect to a power gird following the signed

interconnection agreements with their local electric transmission and distribution utility,

such as the electric substantive rule 25.211 addressed in public utility commission of Texas

[37]. The power grid is also supported by the conventional power companies (GENCOs)

with various conventional generators, like fossil fueled generators. They are capable of

providing sufficient energy to the loads in power grid but are not environment-friendly.

Storage system is another essential component for the proposed framework structure.

It is assumed to be efficient and able to store and release energy quickly, such as super-

capacitors. The storage system is maintained by the service manager, and cooperates

with renewable energy generators. Individual storage and distributed renewable resource

are connected in pairs at same location to a set of DERs, and are only able to charge from

the renewable energy produced by renewable generators while operating in the proposed

EMaaS. The maximum storage capacity is assigned as Smax for each individual storage.

3.4.3 Utilized Data

EMaaS utilizes the sequential time-series data gathered from different components,

which includes the parameters of {Gb, Gs, D, T c, Pm, P r and P s} for K time steps

ahead. Gb and Gs are the production capacities of renewable generators. They can be
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forecasted according to the local weather report with other environment conditions, such

as the different angles, available spaces or positions for each renewable generator[38][39].

D is the electricity demand that could be predicted by historical data, or entered directly

from customers in advance. T c is the assigned capacity for each power distribution line.

It is decided by local power utilities and depends on the physical distribution network,

including the supported loads from both non-EMaaS and EMaaS customers.

{Pm, P r, P s} are three price indicators used by EMaaS to calculate the corresponding

costs for satisfying customers’ electricity demands. Pm indicates the price of importing

power from conventional power grid. It is time-variant and is provided to EMaaS as a

fixed known input value for each time step by conventional power companies or local util-

ities based on their predictions. Environment concern is included in the price indicators.

P s is viewed as a lower price than Pm since it excludes environment costs, such as CO2

emission. The relationship between P s and Pm is showed in (3.1), where α depends on

various environment penalties in each region. P r appears when the green community is

formed as a virtual retail electricity provider. It is presented in (3.2) as a value between

Pm and P s, where β is assigned by the contract according to the agreement between

customers and EMaaS provider. It is similar to the electricity price sold to customer by

existing REPs.

P s = αPm, 0 < α < 1 (3.1)

P r = β(1− α)Pm + P s, 0 < β < 1 (3.2)

3.4.4 Cooperative Procedure

A practical cooperative procedure shown in Fig. 3.2 is proposed for the service

manager interacting with other components. In the beginning of the procedure, the

service manager gathers K time steps ahead utilized data from information pool and

other components. Then the energy management is run for each green community to

achieve the optimal global benefits and determine each decision variable. Corresponding
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Start t= 0
Gather K time 

steps ahead data

Run energy management (EMaaS)
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no
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distribution during the adjustment interval (q)

API

t + q <= Kyes no

Obtain optimal choices combinations 
with corresponding costs

adjusting process on cloud

cloud

each customer side

Figure 3.2: Cooperative procedure

cost for each customer is calculated based on various combinations of decision variables

and is recorded as the billing reference. Suggested amount of imported/exported power

for each time step in K are provided by the service manager to renewable resource

providers as their ideal demands. Suggestions are sent through APIs, which are presented

as the dashed information exchanging lines in Fig. 3.1. Large-scale renewable generators

will export the total produced power, and Adi,t in (3.3) is mapped as the amount for

each prosumer to import/export while it is positive/negative. Asi,t in (3.4) is indicated

to prosumers as the amount of charging or discharging their storage system.

Adi,t = Idi,t + Isi,t + Imi,t − Err
i,t − Esr

i,t − Esm
i,t − Erm

i,t (3.3)

Asi,t = Isi,t − Esr
i,t − Esm

i,t (3.4)

The service is not practical if the suggested ideal demands cannot be satisfied due

to other physical power distribution network constraints or the inaccurate gathered data
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caused by forecast error, such as unpredicted sudden changes in electricity demands.

Therefore, an adjusting process is required to complete the cooperative procedure. When

unexpected situations or forecast errors are observed, the insufficient or surplus amount

(εa) of energy will import from the external power grid with the current price P ∗ or

export to the external power grid with the price αP ∗, and cause a differential cost (εc).

The difference between P ∗ and the utilized Pm would also be treated as forecast error

and affects εc.

An adjustment interval is used as q minutes in the adjusting process. It can be

assigned by following the current operation in real time market, where CAISO uses 5

minutes in real-time economic dispatch process [40]. During each adjustment interval,

customers check their actual amount of produced and acquired power, which is operated

and distributed in parallel by local electric distribution utilities in real time through the

solid physical distribution lines in Fig.3.1. Service manager obtains these real time data

from customers through APIs, and records a factor (δ) as the ratio of the differential cost

(εc) to the total corresponding costs (Copt) for the entire green community. If δ is larger

than a threshold (ρ), the service manager will re-trigger the energy management for the

next K time steps period. Otherwise, the determined decision variables will be followed

by each customer continuously in the next adjustment interval. When the time (K − q)

is reached, the energy management will be re-triggered for the succeeding K time steps.

3.5 Formulation for EMaaS

The proposed EMaaS cooperates with various components to achieve two purposes

for each green community: maximizing the incentive as minimizing the global cost and

enhancing renewable energy integration. A linear programming model is formulated

for EMaaS and limited to individual green community with massive information and in-

volvers. Operation costs for storage systems and renewable generations are assumed to be
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negligible. The model is formed by decision variables {Id, Is, Im, Err, Erm, Esr, Esm, Ebm

, Ebr} and a state variable {S}.

The objective function for the model is to maximize the benefits as minimizing the

global corresponding cost for every prosumer (Cs) and large-scale renewable generator

provider (Cb) in the entire green community during K time steps period. It is shown

in (3.5), where prosumers tend to minimize their electricity cost in (3.6), and large-scale

renewable generators providers are trying to maximize their revenues in (3.7).

min
∑
t∈T

Copt
t =

∑
t∈T

(
∑
i∈N

Cs
i,t +

∑
j∈B

Cb
j,t) (3.5)

Cs
i,t = Imi,t × Pm

t − (Esm
i,t + Erm

i,t )× P s
t

+
(
Idi,t + Isi,t − Esr

i,t − Err
i,t

)
× P r

t (3.6)

Cb
j,t = Ebm

j,t × (−P s
t ) + Ebr

j,t × (−P r
t ) (3.7)

The following constraints subject to the objective function in the formulated model to

ensure the limitation of power system or physical equipments will not be conflicted, and

the ability of renewable energy integration could be achieved. Constraint (3.8) shows the

basic criterion to attract customers to the energy management, which is providing the

guaranty to satisfy the requested electricity demand for prosumers regardless of other

load management algorithms.

Di,t = Idi,t + Imi,t (3.8)

For each time step, the summation of the suggested demands for customers connected

to the same power distribution line needs to satisfy the assigned capacity for correspond-

ing power distribution line. It is shown in constraint (3.9), where Adi,t is addressed in

(3.3). ∑
i∈Lz

Adi,t +
∑
j∈Lz

(Ebm
j,t + Ebr

j,t) ≤ T cz,t ∀z ∈ Z (3.9)

For the renewable generation, constraint (3.10) and (3.11) assure that the exported

energy is equal to the produced amount. Since the total available renewable energy in the
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green community at each time step depends on different choices of other prosumers, it

also needs to be traced with (3.12) to avoid the imported amount exceeding the available

amount.

Ebr
j,t + Ebm

j,t = Gb
j,t (3.10)

Err
i,t + Erm

i,t = Gs
i,t (3.11)

∑
j∈B

Ebr
j,t +

∑
i∈N

(
Esr
i,t + Err

i,t

)
=
∑
i∈N

(
Idi,t + Isi,t

)
(3.12)

The storage is assumed to be efficient so the energy conversion loss can be ignored,

and the operational range for state of charge is set from 0 to Smax. The state variable, S,

depends on the state variable in the previous time step and the charging or discharging

decision in current stage, and their relation is indicated in (3.13). Constraint (3.14)

guarantees the exported energy from the storage will not exceed the current existing

amount in storage, and constraint (3.15) promises that storage will not be saturated

after importing energy from renewable generators.

Si,t+1 = Si,t −
(
Esm
i,t + Esr

i,t

)
+ Isi,t (3.13)

Si,t −
(
Esm
i,t + Esr

i,t

)
≥ 0 (3.14)

Si,t + Isi,t ≤ Smaxi (3.15)

T u and T l are two values used for enhancing renewable energy integration. They are

assigned as the upper bound and lower bound according to various commitments. Since

the formed green community allows EMaaS to coordinate several DERs and demands

as a single one, it is able to restrict and stabilize the amount of produced renewable

energy in between these two values. The smaller the absolute value of T u minus T l is,

the less capacity that conventional generators need to reserve. Therefore, the renewable
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generators within the green community would be able to work in a grid-friendly manner,

with low spinning reserve requirement for conventional generations. Constraint (3.16)

presents the amount of total requested electricity demand minus the total imported

energy from the conventional generators for each time step. This indicates the amount

of renewable energy production for the green community at each time step.

T l ≤ Dtotal −

[∑
i∈N

(
Imi,t − Esm

i,t

)
−
∑
j∈B

Ebm
j,t

]
≤ T u (3.16)

The formulated optimization problem is solvable by state-of-the-art commercial or

open-source LP solvers, with the objective function in (3.5). It is subjected to various

constraints from (3.8) to (3.16), and all variables are greater or equal to 0.

3.6 Case Studies

This section presents case studies with various numbers of EMaaS customers, two

scenarios with different ratios of renewable energy production to the electricity demand,

and three commitment cases. Cost savings performance, renewable energy integration

performance, effects of storage systems, and computational performance are discussed in

detail.

3.6.1 Test Cases

The time horizon K for EMaaS is set to 24 by following the current existing day-

ahead operation interval provided by CAISO, and each time step represents an hour.

Fig. 3.3, Fig. 3.4 and Fig. 3.5 illustrate the utilized data in our case studies. Only

one large-scale renewable resource is assumed to exist in the green community, and its

productivity is generated in a uniform distribution with the range from 30 kW to 170

kW. Several DERs exist in the community as well, and their productions follow the

basis in Fig. 3.3. This basis is designed according to the database from CAISO, where

PV based renewable generations are able to work from clock of 6 to 20 a day during
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Figure 3.3: Basis for the production of Gs

Figure 3.4: Electricity demands basis

the summer time. Each PV generator has various coefficients, like different sizes and

positions. Thus, Gs is calculated as the basis multiplied by a uniform distribution in the

case studies.

The electricity demand basis is based on the typical household load profile showed

in Fig. 3.4. With different preferences that depend on the environment or habits of

each household, the requested electricity demands for each prosumer are generated by

multiplying the basis to a uniform distribution with the range from 0.5 to 1.5. Customers

are randomly connect to different distribution lines, and the available capacities (T c) for

each line are assigned as the number of connected customers times 115 kWh, which is

smaller than the maximum in electricity demand basis.
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Figure 3.5: Price Indicators

To bring the reality into the case studies, the price indicator Pm is treated as a

quadratic fuel cost function in (3.17), which is widely used by thermal power plants [41].

We assume there is a conventional generator supporting 3600 residents, including both

non-EMaaS and EMaaS customers. It is able to produce enough power (Pout) to support

the total electricity demands under its output capacity constraints, which is 500 MW for

the maximum and 100 MW for the minimum as the data provided in [41]. With the cost

function coefficients (a, b, c) = (240, 7, 0.007), Pm is set between 1 to 6 cents per kWh.

The α and β used for P s and P r are set as 0.4 and 0.5. The values of the price indicators

are shown Fig. 3.5. The maximal storage capacities are all set as equals to 30 kWh.

Cost(Pout) = a+ b(Pout) + c(Pout)
2 (3.17)

The ratio of renewable energy production to the electricity demand is the critical

factor for virtually trading renewable energy within the green community, and can be

expressed in terms of (
∑
Gs +

∑
Gb)/D. With a higher ratio, more available renewable

energy could be traded to achieve a lower global cost for each green community. To

present the effects from different ratios of produced renewable energy to the electricity

demand, two scenarios in Table 3.1 are used in the case studies. The ratio is calculated

in percentage as 35.8% to present the low ratio case in scenario 1, and as 66% to indicate
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Table 3.1: Scenario Settings for Case Studies

Scenario Uniform Distribution Range for Gs (
∑
Gs +

∑
Gb)/D

1 0.2 ∼ 1.2 35.8%
2 0.8 ∼ 1.8 66%

the high ratio case in scenario 2. For both scenarios, the renewable energy production

capacities comply interconnection agreements.

3.6.2 Energy Management Schemes

Two management schemes with different strategies are used to compare with the

proposed EMaaS. The first scheme is without green community and is multi-time steps

based (MT). It is widely used in unmanaged DGs [20]. Customers make their decisions

based on the fluctuated price indicators individually. They tend to store the produced

renewable energy when P s is low, and use it when Pm is high. Thus, the cost under

multi-time steps could be reduced.

The second scheme is a single time step version of EMaaS (ST-C), i.e. customers in

the green community are organized in a cooperative pattern. This scheme is following

the idea from P. Bazan [42]. In the ST-C approach, at each time step, customers tend

to satisfy their electricity demands first by using available generations and local storage

systems. The unsatisfied demands will be supplied by purchasing the available renewable

energy from the community with price P r, or from the conventional power grid with

price Pm. After the demands are satisfied, customer will store the surplus produced

renewable energy to his local storage system for his future demands with zero cost.

When the storage system is saturated, the surplus renewable energy will be traded to

other customers within the green community with price P r, and to the main power grid

with the price P s.

Three energy management schemes, including the approach of MT, ST-C and the

proposed EMaaS, are based on LP problems. CPLEX 12.5 [43] was employed as the LP
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Table 3.2: Cost savings performance

Scenario 1 Scenario 2
Cost (hundred dollar) Cost ratio to EMaaS Cost (hundred dollar) Cost ratio to EMaaS

Customer Size MT ST-C EMaaS MT ST-C EMaaS MT ST-C EMaaS MT ST-C EMaaS
500 205.03 205.15 197.4 1.0386 1.0392 1 149.69 148.74 112.49 1.3307 1.3223 1
1000 407.54 407.12 392.02 1.0395 1.0385 1 303.47 301.38 231.15 1.3129 1.3038 1
1500 610.91 610.98 588.38 1.0382 1.0384 1 453.73 450.91 345.09 1.3148 1.3066 1
2000 818.61 818.14 788.1 1.0387 1.0381 1 605.59 600.84 461.11 1.3133 1.3030 1
2500 1021.89 1021.6 984.12 1.0384 1.0381 1 754.29 750.98 574.13 1.3138 1.3080 1
3000 1223.37 1223.68 1178.66 1.0379 1.0382 1 910.64 906.54 692.91 1.3142 1.3083 1

solver in the case studies. In the following subsections, different performance indices are

investigated for the proposed EMaaS. In the performance of cost savings and storage

system, T u and T l are set to be the values (extremely large T u and extremely small T l)

that did not provide the actual bounding in the commitments.

3.6.3 Cost Savings Performance

With different numbers of customers under two scenarios, Table 3.2 lists the abso-

lute cost values for three energy management schemes and the cost ratios to EMaaS. In

scenario 1, the cost for MT scheme requires 3.86% more than EMaaS, and ST-C scheme

requires 3.84% more. When the ratio of produced renewable energy to the electricity

demand is increased in scenario 2, more renewable energy is able to be traded within the

green community so the cost can be significantly reduced by the proposed EMaaS. The

cost for MT scheme would be 31.7% more than EMaaS, and ST-C scheme requires 30.9%

more. The achievable profits remain stable while the number of customers increases, and

are significant when the ratio of produced renewable energy to the electricity demand

is higher. It is promising since increasing renewable energy production capacity is ex-

pectable in many states, like California. The proposed EMaaS is able to maximize the

incentive for individual companies or residents equipping renewable energy generators

and using the service.
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Table 3.3: Commitment Cases Under Scenario 1

EMaaS-case1 EMaaS-case2 EMaaS-case3
T u 33000 kWh 32000 kWh 31000 kWh
T l 0 kWh 0 kWh 0 kWh

3.6.4 Renewable Energy Integration Performance

To demonstrate the capability of the bounds used in the commitment for renewable

energy integration, three cases are presented in Table 3.3 with the customer size of 500

under scenario 1. Table 3.4 presents the renewable energy production from the green

community with different energy management schemes. As expected, when T u is set to

be a lower value, EMaaS is able to reduce the difference between the highest and the

lowest production from the green community. Therefore, conventional generators could

decrease the reserve capacity more, and enhance the ability of integrating renewable

generators with conventional generators. However, as the value of T u decreases, the

cost will increase as shown in Fig. 3.6. A trade-off exists between the cost and the

integration ability. Such reference provides valuable information for EMaaS provider

and local utilities to determine suitable bounds for commitments in the contract.

3.6.5 Effects of Storage Systems

Fig. 3.7 shows the comparison of cost ratio to the case of EMaaS with storage

system under scenario 2 (in Table 3.1) to discuss the impact of the storage systems.

While the storage systems are not involved in the energy management, the cost for

EMaaS is 7.65% more, and yet 20.3% less than the scheme of ST-C. This illustrates that

the proposed EMaaS is able to reduce the cost for green communities regardless of the

storage systems, and the storage systems can further enhance the capability of EMaaS.

The comparison between the scheme of ST-C regardless of storage systems also indicates

that the advantages of storage systems can only be guaranteed when the multi-period
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Table 3.4: Renewable Energy Integration Performance

Renewable energy production from the green community (kWh)
t (hr) ST-C EMaaS-case1 EMaaS-case2 EMaaS-case3

1 136.5481 25.88131 25.88131 25.88131
2 151.5569 0.075705 0.075705 0.075705
3 179.5985 0.01585 0.01585 0.01585
4 77.50117 0 0 0
5 155.5623 0 0 0
6 5308.069 0 0 0
7 10862.52 1845.367 1845.367 1845.367
8 14343.48 23853.5 14343.5 14343.5
9 19466.67 18620.8 29130.8 30130.8
10 26664.03 33000 32000 31000
11 29329.46 27130.57 28130.57 29130.57
12 30801.27 33000 32000 31000
13 33574.5 33000 32000 31000
14 35050.92 33000 32000 31000
15 35449.82 33000 32000 31000
16 31295.11 21370.3 24370.3 27370.3
17 28420.09 28419.98 28419.98 28419.98
18 21495.68 21495.73 21495.73 21495.73
19 13987.43 28987.55 28987.55 28987.55
20 3630.235 3630.319 3630.319 3630.319
21 84.25047 84.29267 84.29267 84.29267
22 198.323 198.2815 198.2815 198.2815
23 101.1395 101.1212 101.1212 101.1212
24 46.20506 46.24026 46.24026 46.24026
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Figure 3.6: Costs with various commitment cases

information is considered altogether. Without considering the information in future

time step, customers will miss the opportunity to lower their costs by selling the surplus

renewable energy with higher P r or P s at the current time step and purchasing with

lower price Pm or P r in the future time step.

3.6.6 Computational Performance

The computation time for cloud based service can be divided into two parts. The first

part is for executing the service, and the second part is for the cloud managing the data,

which includes the connection time from each component. The second part is relatively

small, and several works have been proposed to improve the communication delays to

enable real-time operation for the cloud application [34]. This chapter proposes the

energy management as a service through the cloud based framework. The computation

performance is focusing on the first part of the computation time for executing the service
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Figure 3.7: Cost ratio to EMaaS with storage system

to find optimal suggestions. The execution time of the service depends on different

instance types provided by the existing cloud computing platform. To estimate the

computation time in modern cloud computing platform, a publicly accessible Linux server

equipped with 32 cores and 126 GB memory under medium load is used in case studies.

The scale of resources of this server is comparable to most provided instances from

Amazon Elastic Compute Cloud [44].

The proposed EMaaS is formulated as a linear programming problem, which is ef-

ficiently solvable in polynomial time [45]. Fig. 6 shows the exact computation time

for the number of customers from 1000 to 15000, where 15000 can be considered as a

large enough amount to present as a massive community. This further demonstrates the

proposed EMaaS is realistic and handles the day ahead operation and the adjustment

interval very well. The computation time for the size of 1000 is only 7 seconds, and 3.2

minutes for the size of 15000. It is significantly smaller than the day-ahead operation



www.manaraa.com

41

interval (24 hours), and is sufficient for the adjustment interval in the adjusting process

(5 minutes from the CAISO real-time economic dispatch process). Therefore, the energy

management is manageable and practical to overcome unexpected situations.

3.7 Conclusion

In this chapter, a cloud based framework is proposed to provide the customer-oriented

Energy Management as a Service (EMaaS) for green communities, which are formed as

virtual retail electricity providers (REPs) by involved distributed energy resources (DER)

providers. EMaaS facilitates comprehensively among different types of generators, stor-

age systems, and utilizes sequential time series data. Furthermore, EMaaS could be

adopted and operated economically by existing REPs or utilities, and is practical with

the cooperative procedure. With the formulated linear optimization model, EMaaS is

shown to be practical and manageable from the estimated computational time on a

high-end publicly accessible server. Two advantages for EMaaS are as followed:

(i) Achieving the multi-period global optimal cost. Electricity price and environment

concern are considered together in the cost, and calculated based on various combi-

nation of decision variables, which are suggested for individual customers through

a linear programming model. The global optimal benefit as minimizing corre-

sponding cost for each green community during the K time steps can be achieved.

EMaaS is able to increase the willingness of both companies and residents to equip

renewable energy generators and use the service.

(ii) Enhancing renewable energy integration. The strategy in EMaaS successfully pro-

motes renewable energy integration by reducing the reserve capacity for the dis-

patchable conventional generators and honoring commitments for the green com-

munity. The existing trade-off between minimizing the corresponding cost and

enhancing the capability of renewable energy integration is shown clearly in the
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case studies. Such reference provides valuable information for EMaaS provider and

local utilities to determine suitable bounds for commitments in the contract.
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CHAPTER 4. FAIR DEMAND RESPONSE WITH

ELECTRIC VEHICLES FOR THE CLOUD-BASED

ENERGY MANAGEMENT SERVICE

A paper published in IEEE Transaction on Smart Grid

Yu-Wen Chen, J. Morris Chang

4.1 Abstract

Fluctuated penetration of electric vehicle (EV) loads and production capacities from

distributed energy resource (DER) bring large impacts to power systems. To smooth

fluctuations, financial incentives have to be maximized for customers controlling their

consumption patterns. A fair demand response with electric vehicles (F-DREV) is pro-

posed for the cloud based energy management service. Customers with EV, DER, storage

and multiple loads form communities and obtain optimal choices (electricity usage and

trading) from F-DREV. F-DREV aims to maximize incentives by minimizing global cost

for each community within the given time period, and smooth fluctuations. In order

to attract customers to actively participate, we propose the fairness as “customers with

higher participation level can reduce their individual cost more than those with lower

participation level within the same community”, which is attainable by customizing

trading prices. A binary linear programming model is formulated, and performances are

evaluated in experiments.
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4.2 Nomenclature

Parameters:

G DER production capacity.

T c Assigned capacity for power distribution line.

P b Price for buying energy from power grid to community.

P s Price for selling produced renewable energy from community to power grid.

P u Highest trading price within community.

P l Lowest trading price within community.

P rb Customized buying price within community.

P rs Customized selling price within community.

P e Price for exporting energy from EV.

D Summation of the requested fix loads.

R Required operating time for deferrable load.

α Starting time for deferrable loads and EV.

β Ending time for deferrable loads and EV.

γ Power consumption rate for EV.

ηc Charging efficiency for storage and EV.

ηd Discharging efficiency for storage and EV.

EV init Initial capacity of EV when arriving.
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EV end Required capacity of EV when leaving.

T u Upper bound for smoothing the fluctuation.

T l Lower bound for smoothing the fluctuation.

w Weight for different load types.

Subscripts:

i ith customer.

j jth interruptible or non-interruptible load.

t tth time step.

z zth power distribution line.

Superscripts:

r Distributed energy resource (DER)

m Power grid

c Community

e Electric vehicle (EV)

s Storage

d Load usage

fl Fixed load

il Interruptible load

nl Non-interruptible load



www.manaraa.com

46

Sets:

N For customer from 1 to N .

T For time step from 1 to K.

Z For power distribution lines.

L For customers connected to the same power distribution line.

IL For interruptible loads.

NL For non-interruptible loads.

Choice variables for DER:

Erc Export produced energy from DER to community.

Erm Export produced energy from DER to power grid.

Ere Export produced energy from DER to EV.

Ers Export produced energy from DER to storage.

Erd Export produced energy from DER for load usage.

Choice variables for storage:

Ims Import energy from power grid to storage.

Ics Import energy from community to storage.

Irs Import energy from DER to storage.

Ies Import energy from EV to storage.

Esm Export energy from storage to power grid.
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Esc Export energy from storage to community.

Ese Export energy from storage to EV.

Esd Export energy from storage for load usage.

S State of charge for storage.

Choice variables for EV:

Ime Import energy from power grid to EV.

Ice Import energy from community to EV.

Ire Import energy from DER to EV.

Ise Import energy from storage to EV.

Eem Export energy from EV to power grid.

Eec Export energy from EV to community.

Ees Export energy from EV to storage.

Eed Export energy from EV for load usage.

Se State of charge for EV.

Choice variables for loads:

Imd Use the energy from power grid.

Icd Use the energy from community grid.

Ird Use the energy from DER.

Isd Use the energy from storage.
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Ied Use the energy from EV.

Binary control variables: {Oil, Onl, Oa}

4.3 Introduction

In recent years, electric vehicle (EV) and distributed energy resource (DER) have been

dramatically increased and popularized, due to their effectiveness in reducing greenhouse

emissions and making power grid environment-friendly. The expected fluctuated pen-

etration of EV loads and production capacities from DER bring large impacts to the

power system not only as additional positive and negative loads, but also on reserving

capacity [46]. Impacts of these fluctuated loads become more significant without proper

management when technology such as Vehicle-to-Grid (V2G) enables EVs to work as the

grid resources by providing power back to the power grid [47]. In order to smooth the

fluctuation of EVs and DERs to allow them operate grid-friendly, it is critical to provide

financial incentives for customers controlling their consumption patterns and their EV

charging schedules. Providing the financial incentives is the focus of this chapter.

Literatures of demand response and EV charging scheduling have provided financial

incentives as “electricity usage choices”, which allow customers to utilize DERs, con-

trollable loads and storages to change demands in response to the fluctuated electricity

prices over time. Residential electricity costs are minimized with the cooperation of

various types of loads through the home energy management system in [48], and smart

home controller in [49]. An optimization algorithm in the residential level is proposed

in [50]. Authors in [51] and [52] propose the demand response schemes to minimize the

global cost through a formulated game. Paper [53] deals with load control in multiple

residences. Scheduling managements are discussed in virtual power plant [23] for DERs

with storage to maximize profits, and in EV aggregator [46] to absorb the EVs penetra-

tion while minimizing costs for aggregator. To accommodate EV charging while keeping
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the peak demand unchanged, [54] proposes an incentive based demand response strat-

egy with critical and controllable loads. However, unlike the cloud based framework,

difficulty exists in above literatures due to the requirement of duplicated, dedicated con-

trol entity and corresponding control mechanisms. Moreover, none of them consider the

“trading choices” among customers, which can boost the incentives for customers.

Trading choices appear when customers become owners of grid resources, such as EV

with V2G and DER. They are utilized in net metering mechanism as incentive by retail

electricity providers (REP) [12], but only few buy-back programs are offered and are not

available among customers. Our previous work [30] proposes a cloud based framework to

provide customer-oriented Energy Management as a Service (EMaaS) for “community”,

which are formed as virtual REPs by involved DERs providers. A new price appears

when the community is formed, and is utilized for customers performing the “virtual

trading” for their produced renewable energy within the community to benefit mutually.

The trading is performed virtually due to the physical power distribution lines may not

exist among customers, and can be realized efficiently via a mapping mechanism with the

cloud based framework. The cloud based energy management is provided as a service via

an extensive framework and is also a business model for distributed renewable integra-

tion. It significantly reduces infrastructure costs and increases efficiency, reliability and

scalability. But still, how to utilize it for demand response and EV charging scheduling

to adjust electricity usage for customers within community is an unexplored area.

Furthermore, to substantially attract individual customer, allowing customers form

the community to trade mutually with the same new formed price might not be enough.

Customers are intuitively expecting to gain more benefits if they can actively participate

and contribute to others within the community. Incentives should be provided in a fair

manner. Different from the discussed fairness in the few literatures, where [55] defines

it as assigning the long-term average delay equally for each user and [56] addresses it

as social fairness, we propose the fairness based on the participation level. The par-
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ticipation level has been utilized by cooperation [57] in business to distribute benefits

accordingly. In other words, the fairness in this chapter is defined as “customers with

higher participation level can reduce their individual cost (as the distributed benefits

in cooperation) more than those with lower participation level within the same commu-

nity”. To achieve this fairness, customizing trading prices for customers according to

the participation level is an effective approach.

A fair demand response with electric vehicles (F-DREV) is proposed for the cloud

based energy management service, based on our previous work [30]. Inheriting the char-

acteristics of the cloud based energy management service, F-DREV can be adopted

by existing REPs or utilities, and is flexible, scalable, reconfigurable and cost-efficient.

The interoperability is shown by considering DER, EV with V2G, storage, and multiple

loads (fixed, interruptible and non-interruptible) in this chapter. The proposed fairness is

maintained by customizing trading prices for each customer according to the customer’s

participation level and other involved customers. It is related to the production capacity

of DER and the flexibilities of requested loads. Customer who invests the DER more

can acquire higher participation level and more return of the original investment (i.e.,

reduced individual cost). With the formed community and customized trading prices,

choices of electricity usage and trading are combined for customers. Due to the increas-

ing complexity of massive combinations, finding the optimal choices for customers within

the community is non-trivial. A binary linear programming model is formulated for F-

DREV facilitating among customers within the community to determine the optimal

choices for each customer in the given time periods. F-DREV achieves two goals for each

community: 1) maximizing incentives as minimizing the global cost while maintaining

the proposed fairness for each customer, and 2) smoothing the fluctuation within the

community according to commitments, which are similar to existing contracts between

REPs [12] and utilities. According to the determined optimal choices for entire commu-

nity in the following time periods and the commitments, utilities (i.e., power companies)
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can schedule and control their conventional generators efficiently.

The contributions of this chapter are summarized as follow. (i) To the best of our

knowledge, this is the first work that proposes fairness as “customers with higher partic-

ipation level can reduce their individual cost more than those with lower participation

level within the same community” for the demand response and EV charging scheduling.

The participation level is quantified by a fairness index and utilized to customize the

trading prices. Incentives are directed to customers for actively controlling their con-

sumption patterns and investing DER. (ii) F-DREV realizes the demand response and

EV charging scheduling in the cloud based energy management service [30]. Choices

of electricity usage and trading are combined and determined optimally to achieve the

minimized global cost as the maximized incentives for each community, which is formed

by involved customers owning various combination of DER, EV, storage, and multiple

load types. Fluctuation within each community can be smoothed accordingly to op-

erate DERs and EVs within the community grid-friendly, and help utilities managing

their generators scheduling more efficiently. (iii) A binary linear programming model is

formulated, and detailed performances are evaluated with different experiments.

The remainder of this chapter is organized as follows: the system model is introduced

in Section 4.4, and the formulated binary linear programming model is presented in

Section 4.5. Performance evaluation is discussed in Section 4.6, and conclusions are

summarized in Section 4.7.

4.4 System Model

F-DREV realizes the fair demand response and EV charging scheduling for the cloud

based energy management service, and extends the system model from [30]. The following

subsections firstly introduce the extended framework and the load types. Then fairness

indexes are presented to quantify participation levels, and price indicators are discussed
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with the customized trading prices. Last, the procedure of operating F-DREV for each

community is illustrated.

4.4.1 Extended Framework

The extended framework is illustrated in Fig. 4.1. It is constructed by the F-DREV

provider, a power grid, conventional power companies and multiple communities. F-

DREV is operated on the cloud infrastructure to serve multiple communities through

the thin client interface, i.e., web browsers or application programming interface (API).

The power grid is supported by DERs within communities and conventional power com-

panies with various conventional generators. Different service plans are provided by the

F-DREV provider, and are similar to the various plans provided by existing REPs. Cus-

tomers can choose to join a service plan by agreeing the benefits and rules in contract to

F-DREV provider. Then they become customers of a certain community that is formed

by other customers who also joined the same service plan. In other words, communities

are formed by customers involved in the same service plan, and have different require-

ments and benefits (i.e., trading prices among customers). Each customer stands for

various sizes of household, from single to multiple ones. In our framework, F-DREV is

provided to customers owning various combinations of three components: DER, storage

and EV. To simplify, three types of customer in Table 4.1 are considered in this chapter,

and customers own at most one of each component. The considered components are

discussed blow.

4.4.2 Framework

4.4.2.1 DERs

are focusing on small-scale non-dispatchable distributed renewable energy generators,

such as the solar arrays equipped on rooftops. They are connected to the power grid

following the interconnection agreements with local electric transmission and distribution
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Figure 4.1: Framework

Table 4.1: Customer types

Customer type DER Storage EV V2G
1. 1 1 1 1
2. 1 1 1 0
3. 1 1 0 0

utilities [37]. Each DER has a set of choice variables, {Erm, Erc, Ere, Ers, Erd} with its

production capacity G.

4.4.2.2 Storages

are able to be powered by both DERs and conventional generators, and the (dis)charging

efficiency are indicated as ηds and ηcs respectively. It is assumed can be store and re-

lease energy quickly in this chapter. The minimum and maximum storage capacities are

denoted as Smin and Smax. Each storage system comes with two sets of choice variables:

{Ims, Ics, Irs, Ies} and {Esm, Esc, Ese, Esd}.

4.4.2.3 EVs

are not limited to the charging scenario. They also have the ability of providing

energy back to the power grid, which is known as V2G [58]. Each EV has a set of im-

porting choice variables {Ime, Ice, Ise, Ire}, and another set of exporting choice variables
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{Eem, Eec, Ees, Eed} exists when it has the V2G ability. Depending on different driving

behaviors and schedules, each EV connects to F-DREV at the arriving time αe with the

initial capacity EV init in its battery, and disconnects at the leaving time βe with the

required capacity EV end. The (dis)charging efficiencies are denoted as ηde and ηce with

the rate γe. The minimum and maximum capacity are denoted as Se,min and Se,max.

4.4.3 Load Types

Multiple fixed loads and deferrable loads are considered to be requested by each

customer in this chapter. Fixed loads cannot be shifted and are required to be able

to turn on and off immediately (e.g., television and computers). The summation of

every fixed load is denoted as D. Deferrable loads can be divided up into interruptible

load (e.g., space cooling/heating) and non-interruptible load (e.g., washing machine and

dryer). Interruptible load has higher flexibility since its operation can be delayed and is

able to shut down or turn on after it is active. The operation of non-interruptible load

can be delayed as well, but requires to remain active until the load is fulfilled. In this

chapter, deferrable load is formulated depending on its required operating time R, power

consumption rate γ, and the allowed operating time frame form α to β. The values of

the prior two (R, γ) are based on the standard of various appliances, and the latter two

(α, β) can be assigned by customers directly.

A binary control variable Oil is used to indicate the operating status for each inter-

ruptible load at each time step. It is set to 1 when the interruptible load is activated,

and its summation over the allowed operating time frame has to be equal to the required

operating time, as shown in (4.1).

βil
i,j∑

t=αil
i,j

Oil
i,j,t = Ril

i,j,∀i ∈ N,∀j ∈ ILi. (4.1)

For each non-interruptible load, the operating statuses are indicated by a binary control

variable Onl at each time step. Similar to (4.1), the summation of the activated status
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over the allowed operating time frame is equal to the required operating time in (4.2).

Moreover, to ensure the continuity of non-interruptible loads, another binary control

variable Oa is brought in to denote the starting time of activating the load. Only one

starting time exists between time α and β −R+ 1 as shown in (4.3). Once the starting

time is determined at time t, the Onl between time step t and t+R− 1 need to be 1 to

maintain the continuity. This relationship is presented in (4.4), and can be transformed

to (4.5) to eliminate the non-linearity.

βnl
i,j∑

t=αnl
i,j

Onl
i,j,t = Rnl

i,j,∀i ∈ N,∀j ∈ NLi. (4.2)

βnl
i,j−Rnl

i,j+1∑
t=αnl

i,j

Oa
i,j,t = 1,∀i ∈ N,∀j ∈ NLi. (4.3)

βnl
i,j−Rnl

i,j+1∑
t=αnl

i,j

Oa
i,j,t ×

t+Rnl
i,j−1∑

t′=t

Onl
i,j,t′ = Rnl

i,j, ∀i ∈ N,∀j ∈ NLi. (4.4)

Onl
i,j,t′ −Oa

i,j,t = 0, t = αnli,j, ..., β
nl
i,j −Rnl

i,j + 1, t′ = t, ..., t+Rnl
i,j − 1,∀i ∈ N,∀j ∈ NLi.

(4.5)

4.4.4 Fairness Index

In this chapter, fairness is defined as “customers with higher participation level can

reduce their individual cost more than those with lower participation level within the

same community”. The participation level has been used by cooperative [57] to distribute

benefits to members accordingly. To achieve the proposed fairness, trading prices are

customized for each customer according to a fairness index (F ) that quantify the par-

ticipation level over the given time periods. The customized trading prices P rs and P rb

will be discussed in detail in subsection 4.4.5 with other price indicators.

Fairness index is designed as the forecasted DER’s production capacity (G) multi-

plying the flexibility (Flex) of total requested loads, as shown in (4.6). Customers with
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larger production capacity of DER have more chance to participate by initiating the

trading to others within the community. The DER production capacity depends on the

original investment and is affected by the different conditions of each DER (e.g., local

weather, angles of DER). Likewise, customers with higher flexibility of their requested

loads are able to participate more by adjusting the operating time. Thus, their fairness

indexes would be higher.

Fi =
∑
t∈T

{Gi,t} × Flexi, ∀i ∈ N. (4.6)

Flex is expressed in (4.7) as the summation of four terms, indicated for fixed load,

interruptible loads, non-interruptible loads, and EV load sequentially. The denominator

for each term is the total requested amount times a weight. For the deferrable loads,

the total requested amount is calculated as the summation of each deferrable load’s

required operating time R multiplied by the power consumption rate γ. Three weights

(wfl, wil, wnl) are used to distinguish fixed, interruptible, and non-interruptible loads

respectively. Due to the similar behavior of EV load to interruptible load, wil is also

used for EV loads. The numerator in each term of Flex depends on the allowed operating

time frame. It is set to 1 for fixed load, and is calculated as the allowed operating time

frame (β − α+ 1) minus the required operating time for deferrable loads and EV loads.

Flexi =
∑
t∈T

(
1

wflDi,t

) +

∑
j∈ILi

(βili,j − αili,j + 1−Ril
i,j)

wil
∑

j∈ILi
(γili,jR

il
i,j)

+

∑
j∈NLi

(βnli,j − αnli,j + 1−Rnl
i,j)

wnl
∑

j∈NLi
(γnli,jR

nl
i,j)

+
βei − αei + 1− dEV

init
i −EV end

i

γei
e

wil(EV init
i − EV end

i )
. (4.7)

4.4.5 Price Indicators

{P b, P s, P u, P l, P rs, P rb, P e} are seven price indicators used by F-DREV, where the

cost of electricity and environment are included in the first six price indicators to promote

the usage of renewable energy. P b is the price of buying energy that is supported by

conventional generators from the power grid. It is provided as a known input value
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for each time step via the prediction in real-time electricity pricing or the regulating

retail prices that depend on service provider and utilities. It is similar to the provided

selling prices by the existing REP. The price of selling produced renewable energy to

the power grid is P s. It can be viewed as a smaller value than P b since it excludes the

environment cost, such as CO2 emission cost or tax savings provided by government

[59]. The relationship between P b and P s is shown in (4.8), where λ depends on various

environment penalties in each region.

P u and P l appear with value between P b and P s when the community is formed.

Similar to the new appeared price in [30] and the price provided by existing REP, they

are assigned by contracts that are agreed between customers and F-DREV provider. As

mentioned in subsection 4.4.2, they could be different values for each community. The

agreed P u and P l are utilized by F-DREV to customize the trading prices (P rs, P rb) for

each customer based on the customer’s individual fairness index as discussed in subsection

4.4.4 and other involved customers. Both P rs and P rb are guaranteed to be the values

between P u and P l as interpreted in (4.9) and (4.10). N is the total number of customers

in the community, and rank{Fi} is the ranking of individual fairness index within the

community. Customer with the highest fairness index in the community will acquire

the largest ranking, and able to obtain the largest P rs and smallest P rb. The proposed

fairness can be shown instinctively since customers with higher participation level have

advantage of reducing their individual cost more than others by initiating the trading to

others with the customized price.

P s
t = λP b

t , 0 < λ < 1,∀t ∈ T. (4.8)

P rs
i,t = P l

t +
rank{Fi}

N
(P u

t − P l
t ) ,∀i ∈ N,∀t ∈ T. (4.9)

P rb
i,t = P u

t −
rank{Fi}

N
(P u

t − P l
t ) ,∀i ∈ N,∀t ∈ T. (4.10)

P e is the price of exporting energy from EVs, and is interpreted as the cost of battery

degradation in V2G technologies in this chapter. It depends on the amount and rate of
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Figure 4.2: Procedure

energy withdrawn and is a function of discharge depth discharge and cycling frequency

[60]. For simplification, we assume it can be acquired as a known value in advance.

4.4.6 Procedure

The procedure of operating F-DREV for one community is shown in Fig. 4.2. Firstly,

F-DREV provider actively operates on the cloud infrastructure to gather K time steps

ahead data, which includes {G, T c, P b, P s, P u, P l, P e} and all the parameters of compo-

nents and loads. They are provided to F-DREV as know values via forecast technics

(G,P b, P s), directly input from customers (P e, parameters of components and loads) or

the agreed contracts (P u, P l, T c), where T c is the assigned capacity for each power dis-

tribution line. T c is provided by local utilities, and depends on the physical distribution

network which supports both customers and non-customers of F-DREV.



www.manaraa.com

59

After acquiring the above data, fairness indexes are determined via (4.6) for each

customer. Depending on other involved customers within the community, the individual

fairness indexes are utilized for customizing trading prices for each customer. Then, the

proposed F-DREV will be run to find the optimal global cost for each community and

inform the determined optimal set of variables to each customer through APIs. With

the received optimal set of variables, each customer operates the requested loads, and

(dis)charges storage and EV accordingly for the following given K time steps through

advanced smart home appliances. A mapping mechanism is used to realize the virtual

trading within community. Local utility will only receive the mapped amount of re-

quested energy by each customer as (Ai,t) in (4.11), which is similar to the requests

made from non-F-DREV customers.

Ai,t = Imdi,t + Icdi,t + Imsi,t + Icsi,t + Imei,t + Icei,t − Erm
i,t − Erc

i,t − ηdsEsc
i,t

− ηdsEsm
i,t − ηdeEec

i,t − ηdeEem
i,t ,∀i ∈ N,∀t ∈ T. (4.11)

To deal with uncertainties (e.g., unpredicted changes in electricity usage or unscheduled

operations) and forecast errors, two processes (checking process and adjusting process)

are included after each customer obtaining the optimal sets of variables as shown in

Fig. 4.2. The real-time data is checked by customers for each adjustment interval in the

checking process, and is used by service provider to determine whether to trigger the

F-DREV for the next K time steps or not in the adjusting process. These two processes

are adopted from our previous work [30], where the complete information can be found.

4.5 Formulation

A binary linear programming model is formulated for F-DREV minimizing the global

cost with the customized trading prices and smoothing the fluctuation for each commu-

nity. Variables of the model are listed in nomenclature, which include three binary
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control variables and the choice variables for components (DER, storage, EV) and loads.

The operation costs of components are assumed to be negligible in this chapter.

The objective function in (4.12) is minimizing the global cost for each community

over K time steps. It is interpreted as the summation of each customer’s individual cost,

which includes the cost of satisfying requested loads (Cd
i,t), trading within the community

(Cr
i,t), utilizing the storage system (Cs

i,t) and EV (Ce
i,t). They are shown in (4.13)-(4.16)

respectively.

Minimize
∑
t∈T

(
∑
i∈N

(Cd
i,t + Cr

i,t + Cs
i,t + Ce

i,t)) (4.12)

Cd
i,t = Imdi,t P

b
t + Icdi,tP

rb
i,t (4.13)

Cr
i,t = −Erm

i,t P
s
t − Erc

i,tP
rs
i,t (4.14)

Cs
i,t = Imsi,t P

b
t + Icsi,tP

rb
i,t − ηdsEsm

i,t P
s
t − ηdsEsc

i,tP
rs
i,t (4.15)

Ce
i,t = Imei,t P

b
t + Icei,tP

rb
i,t − ηdeEem

i,t (P s
t + P e

t )− ηdeEec
i,t(P

rs
i,t + P e

t ) (4.16)

The objective function subjects to several constraints, where (4.1)-(4.3) and (4.5) are

included to assure the requirements of deferrable loads. For each customer at each time

step, (4.17) guarantees the total requested amount of energy can be fulfilled. Constraint

(4.18) shows the summation of requested energy, Ai,t in (4.11), from customers connected

to the same zth power distribution line cannot exceed the assigned capacity for the

corresponding power distribution line (T cz ).

Di,t + (
∑
j∈ILi

γili,jO
il
i,j,t) + (

∑
j∈NLi

γnli,jO
nl
i,j,t) = Imdi,t + Icdi,t + Irdi,t + Isdi,t + Iedi,t ,∀i,∀t. (4.17)

∑
i∈Lz

Ai,t ≤ T cz,t, ∀z,∀t. (4.18)

The exported energy from each DER is assured to be same as its production capacity

in (4.19). Constraint (4.20) prevents customers from exporting more than the import

amount of energy from the community to avoid customers with higher participation level

potentially making profit by exporting the produced renewable energy to the commu-

nity with higher P rs and import the required amount from the community with lower
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P rb. Constraint (4.21) tracks the available power within the community to prevent the

requested amount within the community surpass the available amount.

Gi,t = Erm
i,t + Erc

i,t + Ere
i,t + Ers

i,t + Erd
i,t ,∀i, ∀t. (4.19)

Erc
i,t − Icdi,t − Icei,t − Icsi,t ≤ 0,∀i,∀t. (4.20)∑
i∈N

ηdsEsc
i,t − Icsi,t + Erc

i,t + ηdeEec
i,t − Icei,t − Icdi,t = 0,∀t. (4.21)

Constraints (4.22)-(4.25) are related to the storage, where (4.22) shows the state variable

(S) depends on the previous state variable and variables in the current time step. (4.23)

and (4.24) describe that the state variable can only operate in the range from Smin to

Smax after exporting energy at each time step. (4.25) shows the exported amount of en-

ergy cannot exceed the previous imported amount of energy from DREs and community.

It indicates only the energy that is imported from the DERs can be sold with the trading

price (P rs) that excludes the environment cost. align

Si,t+1 = Si,t + ηcs × (Imsi,t + Icsi,t + Irsi,t + Iesi,t)− (Esm
i,t + Esc

i,t + Ese
i,t + Esd

i,t), ∀i, ∀t. (4.22)

Si,t − Esm
i,t − Esc

i,t − Ese
i,t − Esd

i,t ≥ Smini , ∀i, ∀t. (4.23)

Smini ≤ Si,t ≤ Smaxi ,∀i, ∀t. (4.24)

t−1∑
t′=1

(ηscIrsi,t′ + ηscIcsi,t′ − Esc
i,t′)− Esc

i,t ≥ 0,∀i, ∀t. (4.25)

Constraints (4.26)-(4.34) are related to the EV. The initial capacity for each EV is

assigned to its state variable (Se) at the arriving time in (4.26), and (4.27) guarantees

it can acquire larger or equal to the required capacity at the leaving time. Constraints

(4.28)-(4.30) show the state variable of EV equals to 0 when it is not connecting to the

F-DREV, and is always larger or equal to the minimum capacity after exporting energy.

The state variable is constrained by (4.31) to operate in the range between Se,min and

Se,max. The relationship among (dis)charging rate, variables and efficiency are presented

in (4.32) and (4.33). Similar to (4.25), (4.34) guarantees the exported amount of energy

cannot exceed the previous imported power from DERs and community. If customers
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don’t own the EV, all the variables for EV are equal to 0. Likewise, if the owned EV

doesn’t have the V2G ability, the variables related to the exporting are equal to 0.

Sei,t = EV init, t = αi,∀i, ∀t. (4.26)

Sei,t ≥ EV end, t = βi,∀i, ∀t. (4.27)

Sei,t = 0, t = 0, 1, ..., αi − 1, and βi + 1, βi + 2, ..., K,∀i,∀t. (4.28)

t−1∑
t′=1

(ηceIrei,t′ + ηceIcei,t′ − Eec
i,t′)− Eec

i,t ≥ 0,∀i,∀t. (4.29)

Sei,t − (Eem
i,t + Eec

i,t + Ees
i,t + Eed

i,t) ≥ Se,min,∀i,∀t. (4.30)

Se,min ≤ Sei,t ≤ Se,max,∀i,∀t. (4.31)

ηce × (Imei,t + Icei,t + Isei,t + Irei,t) ≤ γei ,∀i, ∀t. (4.32)

ηde × (Eem
i,t + Eec

i,t + Ees
i,t + Eed

i,t) ≤ γei ,∀i, ∀t. (4.33)

Sei,t+1 = Sei,t + ηce(Imei,t + Icei,t + Isei,t + Irei,t)− (Eem
i,t + Eec

i,t

+ Ees
i,t + Eed

i,t), t = αi, αi + 1, ..., βi − 1,∀i, ∀t. (4.34)

Constraints (4.35)-(4.41) indicate the exported amounts between customers’ components

need to match the corresponding imported amount with the efficiency rate.

Irdi,t − Erd
i,t = 0,∀i, ∀t. (4.35)

Irei,t − Ere
i,t = 0,∀i, ∀t. (4.36)

Irsi,t − Ers
i,t = 0, ∀i, ∀t. (4.37)

Iesi,t − ηdeiEes
i,t = 0,∀i,∀t. (4.38)

Iedi,t − ηdeiEed
i,t = 0,∀i,∀t. (4.39)

Isei,t − ηdsiEse
i,t = 0, ∀i, ∀t. (4.40)

Isdi,t − ηdsiEsd
i,t = 0,∀i, ∀t. (4.41)

T u and T l are the upper and lower bound to smooth the fluctuation within the commu-

nity. Through the coordination among every component from customers, the fluctuated



www.manaraa.com

63

Figure 4.3: Basis for the DER production capacity and fixed loads

penetration of EV loads and production capacities from DERs could be complemented to

allow EVs and DERs within the community operate grid-friendly. It can be interpreted

as the total imported energy from the power grid, and is bounded in (4.42). Less capacity

needs to be reserved by the conventional generators when the difference between T u and

T l is smaller.

T lt ≤
∑
i∈N

{Imdi,t + Imsi,t + Imei,t − Erm
i,t − ηdsEsm

i,t − ηdeEem
i,t } ≤ T ut ,∀t. (4.42)

The formulated binary linear programming model is solved by IBM ILOG CPLEX Op-

timizer 12.6 [43] in this chapter with all variables greater or equal to 0.

4.6 Performance Evaluation

4.6.1 Experiment Environment

Experiments are conducted in the hourly day-ahead operation interval, where a time

step is an hour and K equals to 24. Three types of customer in Table 4.1 form a

community, and each customer stands for various sizes of household. The production
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Figure 4.4: Utilized P b, P u, P l, P s in experiment

Table 4.2: Experiment parameters setting

# of j ∈ IL,NL U(1, 5) wfl, wnl, wil 3, 2, 1
R U(1, 3) Smax 10 kWh
γnl, γil U(1, 5) Smin 15%× Smax
αnl, αil U(1, K −R) ηds, ηcs 0.96
βnl, βil U(α +R,K) Se,max 24 kWh
P e 130 $ per MWh Se,min 20%× Se,max
αe U(8, 16) ηde, ηce 0.95
EV init U(1, 4) γev 4 kWh
βe U(α + d(EV init − EV end)e, K)
EV end U(EV init + 4, EV init + 20)

capacity of each customer’s DER follows the basis in Fig. 4.3, according to the database

of CAISO [61] that solar generations are able to work from clock 6 to 20 a day in summer.

Depending on the different DER configurations, the G for each DER is calculated as the

basis times a uniform distribution. To represent the environment of low and high DER

production capacities among the community, U(0.2, 1.2) and U(0.8, 1.8) are two uniform

distributions used for scenario 1 and 2 respectively. Each customer has multiple fixed,

non-interruptible and interruptible loads. The grouped fixed loads are designed based on

a basis of load profile, which is showed in Fig. 4.3. They are calculated by multiplying
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the basis with a uniform distribution, which represents various preferences and different

sizes of households. Parameters of non-interruptible, interruptible loads and weights

are listed in Table 4.2. Customers connect to different power distributions lines (e.g.,

branches from multiple feeders) uniformly. In the experiment, we assume there is no

blackout situation and design the assigned capacity of each power distribution line (T c)

as the number of connected customers times 150 kW, which is slightly larger than the

maximum value in the basis of load profile.

Price indicators are provided as known values via various forecasting methods [62]

and the agreed contracts as discussed in subsection 4.4.5. To make the experiment

environment more realistic, we assume F-DREV acquires P b based on the predicted

fuel cost from a conventional generator, which produces sufficient energy to support

loads for 3600 residents including both non-customers and customers of F-DREV under

its output capacity constraints from 100 MW to 500 MW. With a quadratic fuel cost

function that is widely used in thermal power plants [41], P b is calculated as a+b(3600×

load basis) + c(3600 × load basis)2 with the coefficients (a, b, c) = (240, 7, 0.007). The

values are between 0.9 and 5.4 cents per kWh. λ is set to 0.4 for P s in (4.8). To illustrate

the effect of different designs of P u and P l, two cases of these two price indicators

are discussed. The first case of P u is equal to P s + 3
4
(P b − P s), and P l is equal to

P s + 1
4
(P b − P s). In the second case, P u is set to P s + 5

8
(P b − P s), and P l is equal

to P s + 3
8
(P b − P s). Since the design of P u and P l directly affects the distinction of

the proposed fairness in each community, both cases are discussed in the evaluation of

fairness performance in subsection 4.6.5. For other performance evaluations, the first

case of P u, P l is used. The utilized time variant price indicators, {P b, P u, P l, P s}, over

24 time steps are presented in Fig. 4.4. The price of P e follows the battery degradation

cost in [63] as listed in Table 4.2.

The real experiment implementations are considered in the chapter, where the spec

of tesla home battery [64] is utilized for the vale of Smax, ηds and ηcs. According to [65],



www.manaraa.com

66

Smin is set as 15% of Smax. The value of γe, ηde, ηce, Se,max and Se,min of each EV follow

the summarized data from three types of EV fleet data based on a European scenario in

[46], where Se,min is 20% of Se,max. Values of these parameters are presented in Table

4.2, which also lists EV init, EV end, αe and βe for the simplified driving behavior of each

EV.

4.6.2 Comparison Schemes

Two comparison schemes are implemented to evaluate the performance of F-DREV.

The first scheme, IM, manages loads individually without forming the community. It

is similar to the approaches used in unmanaged distributed generators [66] and home

energy management systems [48]. Trading is not available among customers, and choice

variables are made based on the owned components, loads and fluctuated price indicator

(P b, P s) individually for each customer.

The second scheme, DREV, fully coordinates the formed community without dis-

criminating trading price for individual customer. That is, the trading price within the

community in DREV is same for every customer. In the experiment, the trading price

(P r) in the compared DREV is chosen as the value that is able to achieve the least

cost for each community. It should be the value that provides the same incentive (i.e.

P b − P r and P r − P s) for both customers who want to buy and who want to sell. If

setting P r as the value closer to P b, P r has more chance larger than P b in different time

steps. It decreases the willingness for customers buying from others, and increases the

global cost. Similarly, if setting P r as the value closer to P s, lower incentive will be

provided for customers selling to others and the global cost will be larger. Thus, the

least-cost trading price is set to the value that satisfies (P b
t −P r

t ) = (P r
t −P s

t ). To verify

this, an experiment is conducted for 500 customers under scenario 1 of DER production

capacity to show the global cost that achieved by DREV schemes with three different

trading prices. As expected, the case with least-cost trading price achieves the smallest
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Table 4.3: Requirements of deferrable loads

Interruptible load Non-interruptible load
no. 1 no. 2 no. 3 no. 4 no. 5 no. 1

α 10 15 5 21 1 8
β 13 22 17 24 20 21
γ 2 2 4 3 1 2
R 3 3 2 3 3 2

Figure 4.5: The schedule of EV, storage, and deferrable loads

global cost as $20549.15. The cases with the trading prices as the first case of P u and P l,

which are mentioned in subsection IV-A, achieve larger costs as $20558.73 and $20558.98

respectively.

4.6.3 Illustration of a customer’s schedules and interactions

We extract the information from a type 1 customer (the 87th) out of 500 customers

under scenario 2 (high DER production capacity) to present the schedule of storage, EV,

and deferrable loads. The arriving time of the owned EV is time step 10 with initial

capacity 8 kWh, and the leaving time step is 22 with required capacity 23 kWh. ηde, ηce

and γe follow the setting in Table 4.2. Five interruptible loads and one non-interruptible
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Figure 4.6: Interactions among customer’s components, power grid, and community

load are requested with details listed in Table 4.3. The determined operating time for

each deferrable load, and the (dis)charging status of both storage and EV are presented

in Fig. 4.5. Both storage and EV are operated between their maximum and minimum

capacities, and EV is connected according to its arriving and leaving time. Deferrable

loads are scheduled between their allowed operating time frame, and non-interruptible

load maintains its continuity requirement. For example, interruptible load 5 is scheduled

to operate at time step 11, 15 and 16, and non-interruptible load 1 is assigned to operate

at time step 15 and 16.

To illustrate the interactions among customer’s components, power grid, and the

belonged community, Fig. 4.6 presents the amount of the total requested loads (includes

fixed loads and scheduled deferrable loads), DER production capacity, the imported

energy from both power grid and community, and the transferred amount to storage and

EV from time step 3 to time step 13. Information over 24 time steps is also presented

in the upper left part of the figure. Examples are shown in the Fig. 4.6 such as the
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Table 4.4: Global cost savings performance

Scenario 1 Scenario 2
Customer # IM DREV F-DREV IM DREV F-DREV

500 1.069 1.055 1 1.187 1.142 1
1000 1.067 1.054 1 1.184 1.140 1
1500 1.068 1.054 1 1.184 1.140 1

customer imports power from the power grid for the requested load and charging the

storage at time step 3. At time step 8, the requested loads are fulfilled by importing

from community and the DER production.

4.6.4 Global Cost Savings Performance

To show that F-DREV minimizes the global cost with the customized trading prices

for each community, the global cost savings performance is discussed with three schemes

under two scenarios of DER production capacity. The global cost ratios to F-DREV

are listed in Table 4.4. Comparing the F-DREV to DREV scheme, F-DREV achieves a

lower global cost due to the distinction of different participation levels, where customers

select different electricity usage and trading choices according to their customized trading

prices. F-DREV is able to reduce the cost 5.4% and 14% more than DREV in scenario 1

(low DER production capacity) and scenario 2 (high DER production capacity). While

no community is formed to fully coordinate and perform the trading among customers

in IM scheme, the global cost ratios to F-DREV are larger in IM than in DREV. IM

requires the cost 6.7% and 18% more than F-DREV under scenario 1 and scenario 2. The

achievable performance is stable as the number of customer increases, and is promising

with the growing DER production capacity.

4.6.5 Fairness Performance and Effect of P u, P l

Fairness performance is evaluated with 500 customers under scenario 2 (high DER

production capacity) with IM, DREV, and two F-DREV schemes with two cases of P u
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and P l. Customers are clustered into 2 groups with the sorted fairness index, where

customers in group 1 have higher participation levels than customers in group 2. The

summation of the individual cost for each group in the four comparison schemes are

presented in Fig. 4.7. Comparing the aggregate costs in group 1 and group 2, without the

distinction between different participation levels from customers, the difference between

these two groups is not obvious in IM and DREV scheme. There are no incentives for

customers to increase their participate level. On the other hand, F-DREV maintains the

proposed fairness by letting customers in group 1 (higher fairness indexes) achieve lower

individual costs than other customers in group 2.

The degree of distinguishing different participation levels among customers depends

on the difference of P u and P l. Two cases of P u and P l, mentioned in section 4.6.1,

are used to show their effect to the fairness performance in F-DREV. As shown in Fig.

4.7, as the difference between P u and P l decreases (i.e., P u, P l case 2), the difference of

the aggregate cost between the two groups also decreases while the global cost increases.

However, the global cost in F-DREV is still smaller than the cost in IM and DREV.

Depending on the value of P u and P l, the individual costs in F-DREV for customers

with smaller participation level (group 2) can be slightly higher or lower than their costs

in DREV scheme, and are always less than their cost in IM scheme. A trade-off exists

between the global cost and the degree of distinguishing different participation levels. It

affects the individual cost for customers in group 2, and is a useful reference for service

providers to design the value of P u and P l in their service plans. Although incentive

for customers with lower fairness indexes (group 2) involving F-DREV depends on the

difference of agreed P u and P l, the fairness index will be updated in every operation

period (K time steps). Customers with lower fairness indexes could obtain higher fairness

indexes in the future operation periods. Attractions of reducing individual cost can be

expected by customers in the long term even if the individual cost for customers in group

2 is slightly higher in F-DREV than DREV. With the proposed fairness, customers have
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Figure 4.7: fairness performance and effect of P u, P l

the incentives to not only use the F-DREV service, but also increase their participation

level actively by equipping more DERs or adjusting the flexibility of their requested

loads.

4.6.6 Performance of Smoothing Fluctuations

To evaluate F-DREV’s ability to constrain the fluctuated penetration within the

community, an experiment is conducted in 500 customers under scenario 2 by comparing

IM and F-DREV with three different assigned T u and T l as shown in Table 4.5. The

value of maximum and minimum amount of total requested loads from power grid over 24

time steps, the peak to average ratio (PAR), and the global cost for the four compared

schemes are summarized in Table 4.5. The details of the requested energy from the

power grid at each time step are presented in Fig. 4.8. As expected, F-DREV restricts

the total requested loads from power grid with the determined T u and T l, and achieves

lower global cost and lower PAR value than IM scheme. With the ability of smoothing

the fluctuations, components within the community can be operated grid-friendly. A
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Figure 4.8: Total requested energy from the power grid

Table 4.5: Performance of smoothing fluctuations

IM
F-DREV

case 1
F-DREV

case 2
F-DREV

case 3
T u (kWh) Nan 52000 51250 50500
T l (kWh) Nan -24000 -22500 -21000

Max (kWh) 52861.61 52000 51250 50500
Min (kWh) -26186 -24000 -24000 -24000

PAR 3.69 3.63 3.58 3.52
Global cost ($) 13201.02 11134.63 11149.45 11171.59

trade-off exists as the increased global cost when assigning the smaller difference between

T u and T l. The revealed trade-off can be used as reference for F-DREV providers to

determine the proper boundary (T u, T l) with local utilities in commitments.

4.6.7 Effect of Storage

The effect of storage in F-DREV is discussed with an experiment for 500 customers

under both scenarios of DER production capacities. Based on the announcement from

tesla that multiple home batteries can be installed together [64], up to 90 kWh for the
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Table 4.6: Effect of storage

Scenario 1 Scenario 2
Smax IM DREV F-DREV IM DREV F-DREV

0 kWh 1.05 1.04 1.00 1.13 1.11 1.00
10 kWh 1.07 1.05 1.00 1.19 1.14 1.00
90 kWh 1.16 1.11 1.00 1.53 1.32 1.00

Table 4.7: Effect of electric vehicle

Scenario 1 Scenario 2
Customer types IM DREV F-DREV IM DREV F-DREV

All type 1 1.074 1.065 1 1.204 1.145 1
All type 2 1.069 1.054 1 1.186 1.140 1
All type 3 1.065 1.054 1 1.178 1.140 1

10 kWh battery, we compare three maximum capacity of storages: no storage (0 kWh),

single home battery (10 kWh), and multiple home batteries (90 kWh). The global cost

ratios to F-DREV scheme are listed in Table 4.6. Without any storage, F-DREV is still

able to achieve the smallest global cost in the comparison schemes under both scenarios.

When the capacities of involved storages become larger, the global cost can be reduced

more. With the foreseeable growth and development in the storage and battery [67], the

achievable savings can be expected.

4.6.8 Effect of Electric Vehicle

To discuss the effect of electric vehicle, an experiment is conducted with the 500

customers under both scenarios of DER production capacities. We compare the com-

munities that are formed by all type 1, type 2 and type 3 customers (in Table 4.1)

respectively. The global cost ratios to F-DREV scheme are listed in Table 4.7. With

the similar behavior of EV loads to interruptible loads, when more electric vehicles are

involved in the community, more flexibility can be provided from customers’ requested

loads. Moreover, when EV has the V2G ability, it can be operated as a storage unit
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with specific connecting time and requirement. F-DREV is able to reduce the global

cost more when more EVs with V2G ability are involved in the community.

4.6.9 Execution Time Performance

To estimate the computation time of executing F-DREV in modern cloud computing

platform, a publicly accessible Linux server equipped 40 cores and 252 GB memory under

low load is used in this experiment. This server’s scale of resources is comparable to most

provided instances from Amazon Elastic Compute Cloud [44]. The computation time

for 500 customers is 9.28 seconds, and is 20.52 seconds for 1000 customers. For a larger

size of community, such as 1500, the computation time is 32.5 seconds. It is significantly

smaller than the day-ahead period (24 hrs), and is sufficient for the adjustment interval

(following the 5 minutes real-time economic dispatch process) in checking and adjusting

processes [30].

4.7 Conclusion

In this chapter, a fair demand response with electric vehicles (F-DREV) is proposed

for the cloud based energy management service. Communities are formed by involved

customers owning various combinations of EV, DER, storage and multiple loads (fixed,

interruptible and non-interruptible). For each community, incentive is maximized as the

global cost is minimized by F-DREV for customers controlling their electricity consump-

tion patterns, and the fluctuation is smoothed to operate EVs and DERs grid-friendly.

Electricity usage choices and trading choices are combined and determined optimally for

each customer via a binary linear programming model. Fairness is proposed as “cus-

tomers with higher participation level can reduce their individual cost more than those

with lower participation level within the same community”. It is attainable by cus-

tomizing trading prices for each customer base on the fairness index. With the proposed
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fairness, customers are also encouraged to actively increase their participation level by

equipping more DERs or adjusting the flexibility of their requested loads.
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CHAPTER 5. DISTRIBUTED LARGE-SCALE

INTERACTION AND ADJUSTMENT FOR THE

CLOUD-BASED ENERGY MANAGEMENT SERVICE

5.1 Abstract

Customers’ participations are one of the key factors to demand response and demand

side management programs, especially when customers become prosumers. Incentives

have to deliver to prosumers to increase their engagements with the energy management

for operating their distributed energy resources and electricity loads grid-friendly. In

this chapter, the cross-community interaction (XCI) is proposed for the cloud-based

energy management service to minimize the global costs as maximizing the incentives

for customers within all the collaborated communities over the given time period. The

XCI is performed in the distributed fashion to overcome the privacy issue, and the

ability, scalability, and efficiency for handling the large-scale data by the various allocated

computing resources. It can be solved efficiently via the alternating direction method

of multipliers. The mathematic models for XCI are formulated. A cross-community

adjustment is also introduced for enhancing XCI under the uncertainty. Performances

are evaluated in experiments.

5.2 Nomenclature

Parameters:



www.manaraa.com

77

G DER production capacity.

T c Assigned capacity for power distribution line.

P b Price for buying energy from power grid to community.

P s Price for selling produced renewable energy from community to power grid.

P r Price for trading within each community.

D Summation of the requested fix loads.

ηc Charging efficiency for storage.

ηd Discharging efficiency for storage.

γs (Dis)charging rate of storage.

T u Upper bound for smoothing the fluctuation.

T l Lower bound for smoothing the fluctuation.

Subscripts:

m mth community.

i ith customer.

j jth interruptible or non-interruptible load.

t tth time step.

z zth power distribution line.

Sets:

O For the involved community.
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N For customers within each community.

T For time step, from 1 to te.

Z For power distribution lines.

L For customers connected to the same power distribution line.

Choice variables for DER:

Erc Export produced energy from DER to community.

Erm Export produced energy from DER to power grid.

Ers Export produced energy from DER to storage.

Erd Export produced energy from DER for load usage.

Choice variables for storage:

Ims Import energy from power grid to storage.

Ics Import energy from community to storage.

Irs Import energy from DER to storage.

Esm Export energy from storage to power grid.

Esc Export energy from storage to community.

Esd Export energy from storage for load usage.

S State of charge for storage.

Choice variables for loads:

Imd Use the energy from power grid.
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Icd Use the energy from community grid.

Ird Use the energy from DER.

Isd Use the energy from storage.

5.3 Introduction

The active consumers’ participations are listed as one of the most important charac-

teristics of a Smart Grid [68], [69]. Especially customers have transformed from consumer

to prosumers by adopting distributed energy resources (DERs), how to engage customers

with the proper management while encouraging the investment of DERs to promote the

environment-friendly power grid becomes a critical and important mission. Besides, the

widely discussed Demand Response (DR) and Demand Side Management (DSM) pro-

grams rely on customers’ engagements as the opportunities are provided for customers

changing and managing their ”electrical usage choice”, that is adjusting their consump-

tion pattern according to the fluctuate electricity prices. Thus, how to provide incentives

to customers for encouraging them to involve the energy management is an important

issue.

In recent years, attentions have been aroused on the customers’ engagement and be-

haviors [70], [71], [72], and varieties of DR and DSM programs [73] have been developed

for providing incentives to utilities and customers in literatures. Authors in [52] proposed

the DR schemes via formulated games, authors in [74] introduced the sparse load shifting

in DSM as a distributed game, and authors in [75] applied the Stackelberg game among

multiple utility companies and consumers. The automated residential DR is discussed

in [76], and the DSM’s impact on residential electricity demand from 30 Swiss utilities is

estimated in [77]. However, different from the cloud-based framework, difficulties exist

in above literatures as the requirements of deploying the dedicated control entity and

implementing the corresponding control mechanisms repeatedly for adopting by various
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utilities and customers. Along with the literatures in DR and DSM programs, net meter-

ing [2] are broadly mentioned to realize the trading between customers and utilities, but

only few retail electricity providers [12] provide the excess generation buy-back program,

such as the Green Mountain Energy in Texas. The incentives for customers’ engagements

are still insufficient as the trading choices are limited for prosumers. If prosumers can

collaborate to each other, their global costs can be reduced as the increased incentives

via the trading among each other.

To handle the above-mentioned difficulties and limitations, our previous work [30]

proposed an extensive cloud-based framework to provide customer-oriented Energy Man-

agement as a Service (EMaaS) for ”community”, which is formed by prosumers who agree

to involve in the same EMaaS plan. The EMaaS plan is provided by the EMaaS providers

and is similar to the existing energy service plan provided by REP. A new price indi-

cator appears when the community is formed and is agreed among all the customers

and utilized for customers performing the ”virtual trading” within the community. This

trading is virtual as the physical two-way power distribution line might not exist among

customers, and it can be realized efficiently through a mapping mechanism on the cloud-

based framework. EMaaS successfully provides the incentives to customers to involve the

energy management and also enhance the renewable energy integration. With EMaaS,

customers have the opportunity to form as the virtual REPs, and have more ”trading

choices”. Infrastructure costs are significantly reduced and the efficiency, reliability, and

scalability are increased. The choices of electricity usage and trading are combined to

realize the fair DR with EV on the cloud-based energy management in [78]. Although our

previous two works have managed the significant amount of variables, yet the discussed

managements were targeted within the same community. Similar to the collaboration

among prosumers within the same community, multiple communities should be able to

cooperate with others (e.g., trade the surplus/wanting produced renewable energy) to

achieve the lower global costs as the additional incentives to all the served prosumers.
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The cross-community interaction (XCI) is developed for the cloud-based energy man-

agement service to realize the interactions among communities and is the focus of this

chapter.

However, the development of XCI for multiple communities, which are served by var-

ious EMaaS providers, would bring some critical issues caused by the large-scale data

and the different EMaaS providers. The first issue is the privacy concern that prevents

the availability of gathering all the data from different EMaaS providers. The second

issue is the ability, scalability, and efficiency for handling the large-scale data by the

allocated cloud computing resources. To overcome these issues, the XCI is developed

in the distributed fashion, where each community achieves the optimal energy manage-

ment individually in parallel. The characteristic of the distributed XCI is similar to the

sharing problem [79] and can be efficiently solved by alternating direction method of

multipliers (ADMM) [80]. The ADMM has been popularly used in various areas such as

machine learning, data mining [81], and has been successfully applied to various power

system tasks. Authors in [82] formulated the optimal power scheduling as an ADMM

problem. The paper [83] and [84] proposed the ADMM based algorithm and the N-block

ADMM for the robust power system state estimation. [85] proposed the EV charging

ADMM framework to perform the optimal fleet charging. A distributed demand re-

sponse strategy with EV was proposed in [79]. [86] proposed the decentralized economic

dispatch using ADMM, and authors in [87] adopted the ADMM for the multi-agent opti-

mization problem. Unlike the discussions in above literatures, the ADMM model of the

distributed XCI is more complicated due to the variety choices among customers and

various communities.

Moreover, the overwhelmed exchanged data and computations among multiple com-

munities under uncertainty would occur if no proper adjustment designed for the XCI

since each community could frequently rerun the EMaaS according to the adjusting pro-

cess [30]. Instead of formulating the uncertainty into the optimization model like authors
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in [88] who casted the stochastic problem into coupled ADMM problems, and authors

in [79] used the randomness on ADMM for the uncertainty of base load and distributed

generator, we proposed the cross-community adjustment (XCA) as the aggregated sliding

windows, and can be simply adopted by the XCI.

This chapter proposed the distributed cross-community interaction (XCI) for the

cloud-based energy management [30]. The global costs, which include the cost of elec-

tricity and environment, are minimized as the incentives are maximized to customers not

only within the same community but also in all the collaborated communities. The dis-

tributed XCI overcomes the privacy concern and the ability, scalability, and efficiency for

handling the large-scale data by the allocated computing resources. It is a collaborated

business model for prosumers in the distributed power system. Depending on the differ-

ent cloud service providers utilized by the EMaaS providers, the distributed XCI for the

cloud-based energy management is performed either on the inter-cloud or the intra-cloud

level [89], where the communication time in these two levels is small [90]. The XCA is

also proposed in this chapter to enhance the efficiency of XCI under uncertainty, that is

to avoid the overwhelmed exchanged data and computations.

The contributions of this chapter are summarized in below. (i) This work demon-

strates the advantages of EMaaS where the virtual trading can be performed via the

collaboration not only among customers but also communities. The XCI is proposed

for the cloud-based energy management service to minimize the global costs as max-

imizing incentives to customers within all the cooperated communities over the given

time period. (ii) XCI is developed in the distributed fashion to overcome the privacy

concern and the ability, scalability and efficiency for handling the large-scale data by

the allocated computing resources. The XCA is also proposed to enhance XCI under

uncertainty. (iii) A centralized linear programming model and the distributed ADMM

model are formulated. Performances are evaluated with different experiments.
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Figure 5.1: Extended Framework for the energy management with cross-community
interaction

The remainder of this chapter is organized as follows: the system model is introduced

in Section 5.4. Formulations are presented in Section 5.5. Performance evaluation is

discussed in Section 5.6, and conclusions are summarized in Section 5.7.

5.4 System Model

This work realized the XCI for the cloud-based energy management service and ex-

tends the system model from [30]. The extended framework is firstly introduced in the fol-

lowing subsection. Then, the procedure and the model for the single community are pre-

sented. Last, the XCI model is illustrated. For the simplification, the discussed number

of multiple communities is set to three, which are indicated as {comm1, comm2, comm3}

in the set O throughout the chapter.
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5.4.1 Extended Framework

The extended framework for the cloud-based energy management with XCI is illus-

trated in Fig. 5.1. It is constructed by multiple EMaaS service providers, a power grid,

conventional power companies, and multiple communities form by multiple customers.

Different EMaaS providers operate the energy management on the cloud with different

allocated computing resources and provide various service plans to communities via the

thin client interfaces, e.g. web browsers or application programming interface (API).

These service plans are similar to the various plans provided by existing REPs, where

customers can choose to join by agreeing on the requirements in contract to each EMaaS

providers. Each customer represents as various sizes of households and forms the com-

munity with other customers who also choose the same service plan. The virtual trading

is performed within each community in the dot lines, and across multiple communities

with the dash lines.

The power grid is supplied by conventional power companies and the DERs within

each community that following the interconnection agreement with local electric trans-

mission and distribution utilities [37]. Customers are assumed to own a small-scale

non-dispatchable DER and a storage system in this work. Each DER has a set of choices

variables {Erc, Erm, Ers, Erd}, and various production capacity G. The storage system is

able to be powered by both DERs and the conventional generators with the (dis)charging

efficiency rate {ηc, ηd}, and has the maximum/minimum storage capacity {Smax, Smin}.

Each storage system is assumed can be store and release energy quickly, and has a set

of choice variables {Ims, Ics, Irs, Esm, Esc, Esd}.

5.4.2 Procedure for Single Community

The procedure for the single community is shown in Fig. 5.2. The EMaaS provider

gathers the K time steps ahead data on the cloud, which includes {G, T c, P b, P s, P r, D}

and all the parameters of each storage system. They are the know inputs for the EMaaS,
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Figure 5.2: Procedure for single community

and can be acquired via forecast technics (G,P b, P s), customers’ input (D, parameters

of the storage system), and the agreed contracts (P r, T c). P b is the price for customer

buying the energy that is generated by the conventional power companies from the

power grid. P s is the price for customers selling the produced renewable energy back

to the power grid, and it is a smaller value than P b as the environment cost (i.e., CO2

emission cost or tax saving provided by the government) is excluded. P r is the price

for customers trading to other within the same community. It is appeared and agreed

by all the customers involved in the same service plan. The relationships among these

three prices are written in (5.1) and (5.2). T c is the assigned capacity for each power

distribution line by local utilities and depends on the physical distribution network that

supports both customers and non-customers of EMaaS.

P s = αP b, 0 < α < 1 (5.1)

P r = βP b, α < β < 1 (5.2)
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With all these K time steps ahead data, the EMaaS service provider runs the energy

management on the cloud, and provides the optimal set of variables with the correspond-

ing cost as suggestions to each customer via API. The mapping mechanism is used to

realized the virtual trading within the community, where customers follow the mapped

amount to (dis)charge their storage system in (5.3) and send the energy request in (5.4)

to the power grid.

Mapsi,t = Icsi,t − ηdsEsc
i,t − ηdsEsm

i,t ,∀i ∈ N,∀t ∈ T (5.3)

Mapdi,t = Imdi,t + Icdi,t + Imsi,t + Icsi,t − Erm
i,t − Erc

i,t − ηdsEsc
i,t − ηdsEsm

i,t ,∀i ∈ N,∀t ∈ T. (5.4)

The accuracy checking, and the adjusting process part in Fig. 5.2 are proposed to manage

the uncertainties (e.g., sudden electricity usage changes or the operations not following

the suggestions) and the forecast errors. The accuracy checking part informs the real-

time variance to the adjusting process, and the adjusting process determines to re-trigger

the next K time steps ahead management or not. As adopting from our previous work,

the complete information can be found in [30].

5.4.3 Model for Single Community

The energy management for the single community can be extended from [30] and

formulated as a linear programming model with the 14 choice variables and a state

variable S for each customer at each time step. The objective function f(x) for each

community is minimizing the electricity cost over K time steps, as shown in (5.5). It is

the summation of each customers’ cost of fulfilling the demands (Costd), trading within

the community (Costr), and managing the storage system (Costs).

min f(x) =
∑
t∈T

(
∑
i∈N

(Costdi,t + Costri,t + Costsi,t)) (5.5)

Costdi,t = Imdi,t P
b
t + Icdi,tP

rb
i,t (5.6)
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Costri,t = −Erm
i,t P

s
t − Erc

i,tP
rs
i,t (5.7)

Costsi,t = Imsi,t P
b
t + Icsi,tP

rb
i,t − ηds(Esm

i,t P
s
t + Esc

i,tP
rs
i,t ) (5.8)

The objective function is subjected to the several constraints, where (5.9) ensures the

customer’s demand can be satisfied, and (5.10) guarantees the mapped electricity re-

quests in (5.4) from customers located on the same zth power distribution line won’t

exceed the assigned capacity.

Di,t = Imdi,t + Icdi,t + Irdi,t + Isdi,t ,∀i, ∀t. (5.9)∑
i∈Lz

Mapdi,t ≤ T cz,t, ∀z,∀t. (5.10)

Constraint (5.11) prevents the exported amount of energy from each DER exceed its

production capacity, and (5.12) forbids customer from exporting more than the imported

amount of energy from the community. The total available energy for trading within the

community is tracked in (5.13) to avert customers from requesting more than the available

amount.

Gi,t = Erm
i,t + Erc

i,t + Ers
i,t + Erd

i,t ,∀i, ∀t. (5.11)

Erc
i,t − Icdi,t − Icsi,t ≤ 0,∀i,∀t. (5.12)∑
i∈N

ηdsEsc
i,t − Icsi,t + Erc

i,t − Icdi,t = 0,∀t. (5.13)

For the storage system, (5.14) indicates its status depends on the previous status and

the variables at the current time step. Constraints (5.15) and (5.16) ensure the storage

is operated in its maximum and minimum capacity after exporting energy at every time

steps. Constraint (5.17) is similar to (5.12) to prevent the storage exporting the energy

to the community more than the imported amount. The (dis)charging rate and the

efficiency constrain the variables in (5.18)-(5.19).

Si,t+1 = Si,t + ηcs × (Imsi,t + Icsi,t + Irsi,t)− (Esm
i,t + Esc

i,t + Esd
i,t),∀i,∀t. (5.14)

Smini ≤ Si,t ≤ Smaxi ,∀i, ∀t. (5.15)
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Si,t − Esm
i,t − Esc

i,t − Esd
i,t ≥ Smini , ∀i, ∀t. (5.16)

t−1∑
t′=1

(ηscIrsi,t′ + ηscIcsi,t′ − Esc
i,t′)− Esc

i,t ≥ 0, ∀i, ∀t. (5.17)

ηce × (Imsi,t + Icsi,t + Irsi,t) ≤ γsi ,∀i, ∀t. (5.18)

ηde × (Esm
i,t + Esc

i,t + Esd
i,t) ≤ γsi ,∀i, ∀t. (5.19)

Constraints (5.20)-(5.22) indicate the corresponding variables for internal behavior chang-

ing have to be matched. Constraint (5.23) bound the total imported amount of energy

from the power grid with T u and T l. These two parameters are utilized to smooth the

fluctuation within the community and are agreed between EMaaS provider and the local

utility.

Irdi,t − Erd
i,t = 0,∀i, ∀t. (5.20)

Irsi,t − Ers
i,t = 0,∀i,∀t. (5.21)

Isdi,t − ηdsiEsd
i,t = 0,∀i, ∀t. (5.22)

T lt ≤
∑
i∈N

{Imdi,t + Imsi,t − Erm
i,t − ηdsEsm

i,t } ≤ T ut ,∀t. (5.23)

The above linear programming model can be rewritten in the matrix format, where all

the maintained variables within each community appear as a vector set x, where the

size of each element of x is nx that represents every customers’ 15 variables at each time

step. That is, x = [x1,x2, · · · ,xte ], and each element is maintained with the order of

variables in (5.24) from the first customer to the last customer within the community.

x1 =[[Imdi,t , I
ms
i,t , E

rm
i,t , E

sm
i,t , I

cd
i,t , I

rd
i,t , I

sd
i,t , E

rc
i,t, E

rs
i,t, E

rd
i,t , I

cs
i,t, I

rs
i,t

, Esc
i,t, E

sd
i,t , S]i=1, [. . . ]i=2, · · · ]t=1,∀i (5.24)

The objective function for each community in (5.5)-(5.8) can be represented as (5.25),

where Obj is the objective matrix indicating the constant coefficients in (5.6)-(5.8). The

equality constraints (5.9), (5.11), (5.13), (5.14), and (5.20)-(5.22) are also rewritten as
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Table 5.1: Presentation of z for 3 involved communities

Variables Interaction behaviors Constrains

z1
comm1 buy fromcomm2; ≤ l1comm2 sell to comm1

z2
comm1 buy fromcomm3 ≤ l2comm3 sell to comm1

z3
comm2 buy fromcomm1 ≤ l1comm1 sell to comm2

z4
comm2 buy fromcomm3 ≤ l3comm3 sell to comm2

z5
comm3 buy fromcomm1 ≤ l2comm1 sell to comm3

z6
comm3 buy fromcomm2 ≤ l3comm2 sell to comm3

P eq and beq in (5.27). Likewise, the rest inequality constraints are transformed as P ieq

and b in (5.26).

min f(x) = Obj × x (5.25)

subject to

P ieqx ≥ b (5.26)

P eqx = beq (5.27)

5.4.4 Cross-community Interaction

In this chapter, a vector z is introduced to interpret the trading behaviors between

the involved communities. Each element in the vector z represents as two corresponding

behaviors between any two of the communities. The size of z, nz, depends on the

number of the involved communities (nc), that is nc× (nc− 1). In other words, with the

discussed number of involved community is three in this chapter, thus the size of z is 6

(i.e., z1, · · · , z6), and the presented behaviors can be found in detail in Table 5.1.

Another objective function g(z) is formed by the XCI to further reduce the cost of

each community (i.e., the objective function in (5.5)). To be more detail, the corre-
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sponded community that buys from the other one can reduce the cost with the trading

amount times its purchasing price from the main power grid, P b. Likewise, the corre-

sponded community that sells to the other one can increase the cost with the trading

amount times its selling price to the main power grid, P s. (5.28) itemizes the objective

function g(z) with every element in z.

g(z) = (P s
comm2 − P b

comm1)z
1 + (P s

comm3 − P b
comm1)z

2 + (P s
comm1 − P b

comm2)z
3

+ (P s
comm3 − P b

comm2)z
4 + (P s

comm1 − P b
comm3)z

5 + (P s
comm2 − P b

comm3)z
6 (5.28)

Each element of z is constrained by the corresponding community’s exporting/importing

amount to/from the main power grid, that is (Erm + Esm) and (Imd + Ims). These

constraints are listed in (5.29)-(5.40). Each element also constrained by the assigned

available line capacity between every two communities. The corresponding constraints

are listed in the last column Table 5.1, where {l1, l2, l3} denote the available line capacity

between (comm1, comm2), (comm1, comm3) and (comm2, comm3) respectively.

z1 ≤ Erm
comm2 + Esm

comm2 (5.29)

z1 ≤ Imdcomm1 + Imscomm1 (5.30)

z2 ≤ Erm
comm3 + Esm

comm3 (5.31)

z2 ≤ Imdcomm1 + Imscomm1 (5.32)

z3 ≤ Erm
comm1 + Esm

comm1 (5.33)

z3 ≤ Imdcomm2 + Imscomm2 (5.34)

z4 ≤ Erm
comm3 + Esm

comm3 (5.35)

z4 ≤ Imdcomm2 + Imscomm2 (5.36)

z5 ≤ Erm
comm1 + Esm

comm1 (5.37)

z5 ≤ Imdcomm3 + Imscomm3 (5.38)
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z6 ≤ Erm
comm2 + Esm

comm2 (5.39)

z6 ≤ Imdcomm3 + Imscomm3 (5.40)

Grouping constraints (5.29)-(5.40) by each community and the affected element of z,

they can be rewritten along with the vector x in (5.41) for each community in each time

step. Likewise, the constraints for the available line capacity in Table 5.1 can be written

in (5.42).

Ax ≥Dz (5.41)

1z ≤ l (5.42)

For readers’ convenience, the matrix of At and Dt for comm1 in the first time step are

extracted in below. The first two rows in At indicate (5.30) and (5.32). The third and

fifth rows represent (5.33) and (5.37). The non-zero elements in D indicate the affected

element of z by community 1, that is z1,z2,z3, and z5.

At =



1 1 0 0 0 · · · 0

1 1 0 0 0 · · · 0

0 0 1 1 0 · · · 0

0 0 0 0 0 · · · 0

0 0 1 1 0 · · · 0

0 0 0 0 0 · · · 0


nz×nx

Dt =

[
1 1 1 0 1 0

]
1×nz

The matrix A and D in (5.41) are composed by the At and Dt for every time steps.

AT =

[
At=1,At=2 · · ·At=te

]

DT =

[
Dt=1,Dt=2, · · ·Dt=te

]
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5.5 Formulation

5.5.1 Centralized

Following the discussion in subsection 5.4.3 and 5.4.4, the energy management service

with the XCI can be formulated as a centralized optimization problem. The object

function in (5.43) subjects to the constraint (5.42), and the constraints (5.26), (5.27),

(5.41) for every involved community, which are represented as (5.44) - (5.46).

min
xm,z

∑
m∈O

fm(xm) + g(z) (5.43)

subject to: (5.42), and

Amxm ≥Dmz,∀m ∈ O (5.44)

P ieq
m xm ≥ bm,∀m ∈ O (5.45)

P eq
mxm = beqm,∀m ∈ O (5.46)

5.5.2 Distributed

It is inefficient to solve the problem (5.43) in a centralized way due to the massive

variables and the constraints. In addition, different communities might be severed by

different energy management service providers, which leads to the privacy issues for

customers, and brings the difficulty to perform the energy management altogether by

gathering different parts of data together. The objective function in (5.43) is the standard

sharing problem [79] and can be efficiently solved by the big data optimization algorithm.

In this work, the alternating direction of multiplier method (ADMM) [80] is utilized. The

approaches of transforming the centralized problem (5.43) to the distributed ADMM

format are discussed in detail in below.

To perform the problem in the distributed approach, the global variable z in the

objective function (5.43) has to be decoupled as zm for each community. The objective
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function can be represented as (5.47). Constraint (5.49) is designed to ensure the de-

coupled zm achieve the same global variable φ, where the indicated matrix Cm for the

related zm within each community.

min
xm,zm

∑
m∈O

{fm(xm) + g(zm)} (5.47)

subject to: (5.42), (5.45), (5.46), and

Amxm = Dmzm + Y m,∀m ∈ O (5.48)

zm = Cmφ,∀m ∈ O (5.49)

As the variable vectors, x and z are maintained by each community for every time steps

from t = 1 · · · tc, they can be grouped as another variable vector X.

XT =

[
xt=1, zt=1, · · · ,xt=te , zt=te

]
With the variable vectorX, the equations (5.47)-(5.49) can be simplified to (5.50)-(5.52).

Constraints (5.42), (5.45) and (5.46) also have to transform to (5.53) and (5.54), where

the prior two inequality constraints are combined. Finally, our problem (5.47) is modeled

in the ADMM format as presented in below.

min
Xm,Y m,φ

∑
m∈O

θ(Xm) (5.50)

subject to:

AmXm − Y m = 0,∀m ∈ O (5.51)

BmXm −Cmφ = 0,∀m ∈ O (5.52)

Gcieqm Xm ≥ Gbm,∀m ∈ O (5.53)

GceqmXm ≥ Gbeqm,∀m ∈ O (5.54)

where Bm is the matrix with the zeros matrix with the size of in front and an identity

matrix following the size of each zm for every time step t.

Bm =

[
[0 1]t=1 . . . [0 1]t=te

]
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Figure 5.3: Conceptual diagram for ADMM steps

5.5.3 ADMM Steps

The problem (5.50) is multi-block ADMM, and can be efficiently solved iteratively

[80][91] with its augmented lagrangian (L) in (5.55), where {λ(1,m), λ(2,m)} are the dual

variables, {ρ1, ρ2} are the penalty parameters, and 〈·〉 denotes the inner product.

L(Xm,Y m,φ,λ(1,m),λ(2,m)) =
∑
m∈O

θ(Xm) +
ρ1
2

∑
m∈O

||AmXm − Y m||2

+ 〈AmXm − Y m,λ(1,m)〉+
ρ2
2

∑
m∈O

||BmXm −Cmφ||2 + 〈BmXm −Cmφ,λ(2,m)〉

(5.55)

Variables {Xm,Y m,φ,λ(1,m),λ(2,m)} are updated on the different cloud computing re-

sources following the (5.56)-(5.60), where the superscript k indicated the iteration num-

ber. Sequentially, community m update the owned Xk
m following the (5.56), which sub-

jects the constraint (5.53) and (5.54), and Y k
m with the closed form solution in (5.57) on

the cloud computing resources that are utilized by individual community respectively.

Then each community’s cloud computing resources send the updated Xk+1
m and Y k+1

m

to the main energy management controller’s cloud computing resources to further up-

date the global variable φk, the dual variables λk(1,m), and λk(2,m) following (5.58)-(5.60).

After the update, variables φk+1, λk+1
(1,m), λ

k+1
(2,m) are sent to the computing resources that

are maintained by each community. This procedure is illustrated in Fig. 5.3, and the

algorithm is addressed in details for our five-block ADMM problem in Algorithm 1.
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Xk+1
m = argminXm

{θ(Xk
m) +

ρ1
2
||AmX

k
m − Y k

m||2 + 〈AmX
k
m − Y k

m,λ
k
(1,m)〉

+
ρ2
2
||BmX

k
m −Cmφ

k||2 + 〈BmX
k
m −Cmφ

k,λk(2,m)〉} (5.56)

Y k+1
m =

1

ρ21
(ρ1AmX

k+1
m + λk(1,m)) (5.57)

φk+1 = argminφi
{
∑
m∈O

θ(Xk+1
m ) +

ρ2
2

∑
m∈O

||BmX
k+1
m −Cmφ

k||2

+ 〈BmX
k
m −Cmφ

k,λk(2,m)〉} (5.58)

λk+1
(1,m) = λk(1,m) + ρ1(AmX

k+1
m − Y k+1

m ) (5.59)

λk+1
(2,m) = λk(2,m) + ρ2(BmX

k+1
m −Cmφ

k+1) (5.60)

Algorithm 1 ADMM Steps

1: for k = 1 to MAXITER do
2: for m ∈ O do
3: Xk+1

m ← (5.56) s.t. (5.53), (5.54)
4: end for
5: for m ∈ O do
6: Y k+1

m ← (5.57)
7: end for
8: φk+1 ← (5.58)
9: for m ∈ O do
10: λk+1

(1,m) ← (5.59)
11: end for
12: for m ∈ O do
13: λk+1

(2,m) ← (5.60)
14: end for
15: end for
16: return {Xm,Y m,φ,λ(1,m),λ(2,m)}

Convergence Analysis: The convergence of multi-block ADMM has been discussed

widely in recently. Sufficient conditions have been established in [91] and [92] for K-block

(K ≥ 3) ADMM. With the linear coupling constraints, our ADMM problem falls into the

categorization in [93], where it is guaranteed to converge to the global optimal solution

under some regularity assumptions [94].
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Figure 5.4: Illustration of the Cross-Community Adjustment

5.5.4 Cross-community Adjustment

The adjustment process in Fig. 5.2 is maintained by each community individually.

Without proper management scheme, the individual adjustment process in each com-

munity might cause the overwhelmed computations and exchanged data. The cross-

community adjustment is proposed to collaborate with the communities who physically

located on the same electrical distribution line or region. An example is illustrated in

Fig. 5.4 with the threshold equals to 5 to determine to re-trigger the next K time step

ahed EMaaS. In the beginning, the XCI with EMaaS is performed for these three com-

munities. Without the cross-community adjustment, the inaccurate accumulated error

in comm1 initiates the adjusting process at t = 3 and informs the other two communities

to perform the XCI with EMaaS again. Likewise, at t = 6, comm3 triggers its adjust-

ing process, and rerun the XCI with EMaaS. Massive computations and exchanged data
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Figure 5.5: Basis of Demand and Renewable Energy Production Capacity

could be avoided with the proposed cross-community adjustment as the uncertainty fluc-

tuation could be complemented among communities. As shown in our example, the XCI

with EMaaS only needs to be performed at t = 6 with the cross-community adjustment.

5.6 Performance Evaluation

5.6.1 Experiment Environment

The production capacity of each customer’s DER follows the basis in Fig. 5.5, ac-

cording to the hourly day-ahead data from CAISO [61] that solar generations are average

work from clock 6 to clock 20 a day during summer. To indicate the different configura-

tions of each DER (i.e., size, angle, the location of shades, etc.,), the basis is multiplied

to a uniform distribution, where U(0.2, 1.2) and U(0.8, 1.8) are used to show the envi-

ronments of low and high DER production capacity respectively. The requested demand

for each customer is designed based on the typical household load profile in Fig. 5.5.

The demand basis times a uniform distribution U(0.5, 1.5) to mimic the various sizes of
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households and customers’ electricity usage preferences. For the simplification purpose,

we represent 24-time steps into 4-time steps, where each step originally stands for an

hour becomes 6 hours, and the amount of indicated power becomes the average amount

of the original amount within 6 hours. The simplification is indicated with lines in Fig.

5.5.

The discussed storage system follows the spec of Tesla Powerwall, where the ηc, ηd are

set to 0.95 that match the powerwall’s round-trip efficiency, and γs is set to 2 kW [64].

The storage capacity follows [65], where Smin is 15% of Smax. In this work, the blackout

situation is assumed will not occur. Customers are designed to locate on different distri-

bution lines in our experiment, and the available capacity of each power distribution line

(T c) is assigned based on the number of connected customer times the largest requested

electricity demand D. As the ability of smoothing the fluctuation within each community

has been discussed and demonstrated thoroughly in [30] and [78], this chapter waives

this discussion and sets T u and T l as the unbounded value.

The prices indicators {P b, P s} are acquired via the predictions and P r is agreed in

contracts between the joined customers and each EMaaS service providers. To mimic

the experiment more realistic, the design of P b for each community is based on the

fuel cost predicted by a conventional generator. The conventional generator support

3000 households includes the involved customers and other households who didn’t the

energy management service. The utilized quadratic fuel cost function in [41] a+b(3000×

AvgDe) + c(3000×AvgDe)2 sets the value of P b falls in the range of 1.4 to 9.8 cents per

kWh. The AvgDe is the average of all customers’ demands within the community and

the coefficients (a, b, c) = (240, 7, 0.007). The α and β in (5.1) and (5.2) are designed as

0.4 and 0.7 respectively. The implementation is conducted in MATLAB and run on the

publicly accessible server.
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Table 5.2: Advantage of Cross-community Interactions

low DER production capacity high DER production capacity
Customers 50 75 100 125 50 75 100 125

l = 0 1.060 1.047 1.039 1.034 1.174 1.118 1.082 1.063
l = 500 1.036 1.03 1.024 1.025 1.112 1.079 1.055 1.041
l = 1000 1.017 1.015 1.012 1.008 1.054 1.039 1.027 1.021
l = 1500 1 1 1 1 1 1 1 1

5.6.2 Cost saving Performance

To show the advantage of XCI for the cloud-based energy management, the cost saving

performance is conducted with the experiments under the scenarios of high and low DER

production capacity, the cases of {50, 75, 100, 125} customers in each community, and the

available community line capacities (l) are set as {0, 500, 1000, 1500 kW}, where l = 0 is

the case without XCI. The results of cost ratio to the case of l = 1500 are listed in Table.

5.2. The global cost of three communities with 50 customers in each community under

low DER production capacity requires 6% more if no XCI exists among communities.

Likewise, without XCI, the global cost of three communities requires 11.8% more for

the size of 75 customers under high DER production capacity. The cost saving is larger

when the available community line capacity is larger and the DER production capacity

is higher. To be more details, the advantage of XCI becomes more significant when the

ratio of l to the number of customers within each community is larger.

5.6.3 ADMM Converge Performance

The convergence of ADMM is discussed with the scenario of low DER produc-

tion capacity, and each community has three customers. The available line capacities

(l1, l2, l3) are all set to 100. Fig. 5.6 shows the convergence of the objective value

(hundreddollars/kWh) over the iterations with different settings of the penalty param-

eter (ρ), which is set to equal to ρ1, and ρ2. The problem in (5.50) successfully converges

regardless the setting of ρ. To further show the difference affects from the various ρ,
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Figure 5.6: Convergence of ADMM

iteration from 25 to 150 are extracted in Fig. 5.7. When the ρ is set to a larger value,

the convergence rate is slower.

5.6.4 Advantage of Cross-community adjustment

In order to test the advantage of cross-community adjustment, another program is

implemented to mimic the example in Fig. 5.4. Three communities are assumed to con-

nect on the same power distribution line, and the threshold for the individual adjusting

process is 5 in each community (IndiAdj). Each community is designed to have the

inaccurate data from −25 to 25 with the probability of Err at every time step. Once

the accumulated inaccurate data exceed the threshold, the communication will be initi-

ated among communities and trigger the ADMM for the next round. That is, the count

of communication package (CommPkg#) will +2, and the count of performed ADMM

(ADMM#) will +1. The results with three different settings of the cross-community

adjustment threshold (i.e., 2.5, 2.75 and 3 times the threshold of the single commu-

nity as CrCom1, CrCom2, and CrCom3 respectively) are presented in Fig. 5.8, where
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Figure 5.7: Extracted iteration 25 to 150 from Fig. 5.6

the number in x-axis indicates the different Err cases, and the counts in each case are

the average of ten experiment runs. The advantage of cross-community adjustment is

successfully shown with the increasing difference between the IndiAdj and other three

CrCom scenarios; especially the difference becomes more significant when the Err is

larger.

5.7 Conclusion

In this chapter, the cross-community interaction (XCI) is proposed for the cloud-based

energy management. With the enabled trading choices among all customers within all

the collaborated communities, the global costs (includes both environmental cost and

electricity cost) can be minimized as the incentives are maximized to customers. The

XCI for the cloud-based energy management is formulated in the distributed approach to

overcome the privacy concern of maintaining customers information by each community,

and the concern of the allocated cloud computing resources’ ability, scalability, and

efficiency. The XCI for the cloud-based energy management is efficiently solvable via
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Figure 5.8: Advantage of Cross-community adjustment

alternating direction method of multiplier. The communication time for the distributed

XCI is small as it is utilized by different cloud computing resources from different EMaaS

providers in the inter-cloud or the intra-cloud level. The cross-community adjustment is

also proposed to enhance the efficiency of XCI for EMaaS under uncertainty by reducing

the unnecessarily overwhelmed data exchanging and computations.



www.manaraa.com

103

CHAPTER 6. SUMMARY AND FUTURE WORK

6.1 Summary

As the discussed introduction in chapter 1, the extensive cloud-based framework

is proposed to provide Energy Management as a Service (EMaaS) in chapter 2. It

provides the opportunity for prosumers forming the community as the virtual retail

electricity provider (REP) to perform the virtual trading and achieve the lower global

costs (includes the cost of electricity and environment) over the given time. With the

formed community, distributed energy resources are managed together to enhance the

renewable energy integration.

The fair demand response with electric vehicle (F-DREV) is proposed for the cloud-

based energy management service in chapter 3. Customers with the electric vehicle,

distributed energy resource, storage and multiple loads form the community and obtain

the optimal choices (electricity usage and trading) from F-DREV. To attract customer

to actively participate, the trading prices are customized for customers to attain the

proposed fairness, which is “customers with higher participation level can reduce their

individual cost more than those with lower participation level within the same commu-

nity.”

Chapter 4 proposed the distributed large-scale cross-community interaction and ad-

justment for the cloud-based energy management to allow communities collaborated to

each other. The global costs are minimized to customers within all the cooperated com-

munities over the given time period. To overcome the privacy concern and the ability,
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scalability, and efficiency for handling the large-scale data by the allocated computing

resources, the cross-community interaction (XCI) is developed in the distributed fashion,

where each community achieves the optimal energy management individually in paral-

lel. XCI for the cloud-based energy management can be efficiently solved by alternating

direction method of multipliers. The cross-community adjustment is also proposed to

enhance the XCI under uncertainty. The centralized linear programming model and the

distributed ADMM model are formulated.

6.2 Future Work

While this thesis has proposed the extensive cloud-based framework to provide the

EMaaS and realized the F-DREV and XCI for the cloud-based energy management

service, the future work of this these could generally fall into two directions. That is

the investigation of customers’ behaviors and the realizations for the cloud-based energy

management service. As variety choices have created to prosumers, how would these

choices be further utilized to achieve the smart grid functions would be an interesting

aspect. For example, whether if the changing of prosumers’ behavior will lead to the

self-healing, how to adopt the uncertainty other than the sliding windows discussed in

chapter 4, and how will the business model in the cloud-based energy management affect

the distributed electricity marketing and wholesale electricity marketing. The other

direction is the realizations for the cloud-based energy management service, for example,

how to extend the distributed large-scale energy management in chapter 4 with the

utilization of big data analysis and machine learning techniques. Also, with the discussed

fairness in chapter 3, the categorization of customers would be an important factor to

affect the fairness indexes. Customers with similar criteria, i.e., the invested DER and

the average requested electricity demand, should be assigned to the same community to

maintain the proposed fairness properly, and this would become a clustering problem.
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